Citation: | YANG Shaohua, ZHANG Dancheng, TIAN Yabin, YE Changmei, ZHAO Yujuan, LI Linshan. Corrosion of 5083 aluminum magnesium alloy in NaCl solution with different concentrations[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 1-5. DOI: 10.13264/j.cnki.ysjskx.2018.02.001 |
[1] |
信绍广, 朱伟, 李军.钢铁热喷涂金属涂层耐蚀性能的研究进展[J].金属世界, 2012(1):16-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jssj201201004
|
[2] |
TOROS S, OZTURK F, KACAR I. Review of warm forming of aluminum–magnesium alloys[J]. Journal of Materials Processing Technology, 2008, 207(1/2/3):1-12. https://www.sciencedirect.com/science/article/pii/S092401360800318X
|
[3] |
杨少华, 赵宇娟, 李林山, 等.微区电化学扫描技术应用现状[J].有色金属科学与工程, 2017, 8(3):29-34. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017030005
|
[4] |
张艾艾, 何晶靖, 刘天娇, 等. 5A06铝镁合金海水腐蚀电化学特性[J].航空学报, 2015, 36(9):3147-3154. http://www.oalib.com/paper/4694908
|
[5] |
赵月红, 林乐耘.不同加工及表面处理状态LF6铝镁合金的深海腐蚀行为[J].中国有色金属学报, 2001, 11(增刊1):27-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb2001z1007
|
[6] |
穆振军, 陈翔峰, 任润桃, 等. 45#钢和铝镁合金在淡海水交替环境下的腐蚀行为研究[C]// 2009'水环境腐蚀与防护学术研讨会, 北京: 中国腐蚀与防护学会水环境专业委员会, 2009.
|
[7] |
王新印, 夏妍, 周亚茹, 等.基于扫描电化学显微镜产生/收集和反馈模式研究纯Mg腐蚀行为[J].金属学报, 2015, 51(5):631-640. doi: 10.11900/0412.1961.2014.00602
|
[8] |
TAN Y, LIU T. Characterising localised corrosion inhibition by means of parameters measured by an electrochemically integrated multielectrode array[J]. Corrosion Engineering Science & Technology, 2014, 49(1):23-31. doi: 10.1179/1743278213Y.0000000100?journalCode=ycst20
|
[9] |
周亚茹, 朱泽洁, 聂林林, 等.氯离子浓度对Ni-P合金涂层失效过程影响的SECM实验和COMSOL模拟研究[J].表面技术, 2016, 45(7):8-16. http://www.cqvip.com/QK/93576X/201607/669502675.html
|
[10] |
孙飞龙, 李晓刚, 卢琳, 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J].金属学报, 2013, 49(10):1219-1226. http://www.cnki.com.cn/Article/CJFDTotal-ZYXZ201506002.htm
|
[11] |
骆鸿, 魏丹.金属腐蚀微区电化学研究进展(1)扫描电化学显微镜技术[J].腐蚀与防护, 2009, 30(7):437-441. https://www.wenkuxiazai.com/doc/267b000d27284b73f24250c7.html
|
[12] |
KATEMANN B B, INCHAUPSE C G, CASTRO P A, et al. Precursor sites for localised corrosion on lacquered tinplates visualised by means of alternating current scanning electrochemical microscopy[J]. Electrochimica Acta, 2003, 48(9):1115-1121. doi: 10.1016/S0013-4686(02)00822-8
|
[13] |
SHI Y Y, ZHANG Z, SU J X, et al. EIS study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry conditions[J]. Materials & Corrosion, 2005, 56(10):701-706. doi: 10.1002/maco.200503869
|
[14] |
AHMAD S, GUPTA A P, SHARMIN E, et al. Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Prog Org Coat, 2005, 54: 248-255. doi: 10.1016/j.porgcoat.2005.06.013
|
[15] |
SANCHEZ C M, SOLLA-GULLON J, VIDAL-IGLLESISA F J, et al. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(16):5622-5625. doi: 10.1021/ja100922h
|
[16] |
杨少华, 刘增威, 林明, 等. 7075铝合金在不同pH值NaCl溶液中的腐蚀行为[J].有色金属科学与工程, 2017, 8(4): 26-30. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201612011
|
[17] |
MAZINANI S, S AMSAMI A, JAHANMIRI A, et al. Experimental study on equilibrium solubility (at low partial pressures), density, viscosity and corrosion rate of carbon dioxide in aqueous solutions of ascorbic acid[J]. Fuel & Energy Abstracts, 2011, 305(1):39-42. https://www.sciencedirect.com/science/article/pii/S0378381211001038
|
[18] |
吴茂永, 田继强, 曹立新, 等.钨铝合金在不同NaCl溶液中的电化学腐蚀行为研究[J].腐蚀科学与防护技术, 2015, 27(1):25-30. doi: 10.11903/1002.6495.2014.094
|
[19] |
BURNS J T, G UPTA V K, A GNEW S R, et al. Effect of low temperature on fatigue crack formation and microstructure-scale propagation in legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue, 2013, 55(7):268-275. https://www.sciencedirect.com/science/article/pii/S0142112313001928
|
[20] |
SOUTO R M, GONZALEZ-GARCIA Y, IZQUIERDO J, et al. Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: revealing the early stages of coating breakdown in corrosive environments[J]. Corrosion Science, 2010, 52(3): 748-753. doi: 10.1016/j.corsci.2009.10.035
|
[1] | LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013 |
[2] | LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008 |
[3] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[4] | LUO Linshan, LIU Wenwen, WEN Xiaoqiang, ZHANG Fan, ZHOU Xinhua, GUO Chunping, ZHOU Youchi, PU Jian. Effect of La doping on the structure and electrochemical properties of layered Li-rich Mn-based oxide cathode materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 104-110. DOI: 10.13264/j.cnki.ysjskx.2019.03.018 |
[5] | LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012 |
[6] | LIU Xilin, ZhONG Shengwen, MEI Wenjie, CHEN Peng, JIN Zhu, WANG Chunxiang. Synthesis and properties of Li1.07(Ni0.4Mn0.53)1-xAlxO2 as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 63-68. DOI: 10.13264/j.cnki.ysjskx.2015.05.012 |
[7] | Yin Zhuang, Zhou Hongwei, Ding Xianan, Yan Gang, Xin Qin, Wang Xindong. Synthesis and performance study of one-dimensional LiNi1/3Co1/3Mn1/3O2 nanofiber prepared by electrospinning[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2015.02.006 |
[8] | ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002 |
[9] | ZHONG Sheng-wen, FENG Zhi-fang, XIE Min. Synthesis and Performances of Li (Mn1/3Ni1/3Co1/3)O2 as the AA Type of Lithium-ion Batteries by Melting Salt[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 9-13. |
[10] | LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37. |