Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HUANG Min, LIU Gaoyang, WANG Xindong. Synthesis and performance of multilayered titanium mesh oxygen evolution anode in polymer exchange membrane water electrolysis[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 1-5. DOI: 10.13264/j.cnki.ysjskx.2016.03.001
Citation: HUANG Min, LIU Gaoyang, WANG Xindong. Synthesis and performance of multilayered titanium mesh oxygen evolution anode in polymer exchange membrane water electrolysis[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 1-5. DOI: 10.13264/j.cnki.ysjskx.2016.03.001

Synthesis and performance of multilayered titanium mesh oxygen evolution anode in polymer exchange membrane water electrolysis

More Information
  • Received Date: September 21, 2015
  • Published Date: June 29, 2016
  • Using titanium mesh as the diffusion layer substrate, chloroiridic acid as the precursor, oxygen evolution anode of IrO2/Ti was prepared by the thermal decomposition method, and then the membrane electrode assembly was prepared via the hot-press method. The effects of performance and life caused by different layer of titanium mesh oxygen evolution anode was investigated by scanning electron microscopy, cyclic voltammogram, alternating current impedance, cell performance curve test and anode accelerated life test. The results show that the integral charge increased from 84.27 mC/cm2 to 153.12 mC/cm2 and the electrochemical reaction impedance was decreased from 7.38 ohm·cm2 to 3.03 ohm·cm2 both in the single layer Ti mesh and double layer Ti mesh with the improved cell performance. Accelerated life tests show that it has a significant boost in stability and life from single to double layer. The life of the titanium mesh oxygen evolution anode increased from 30 h to 53 h.
  • [1]
    GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175. doi: 10.1016/j.ijhydene.2005.04.038
    [2]
    GRIGORIEV S A. High pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728. doi: 10.1016/j.ijhydene.2010.03.058
    [3]
    王海燕,刘志祥,毛宗强,等. SPE电解池催化剂载体的研究[J].化工新型材料,2009,37(1):32-33. http://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901012.htm
    [4]
    MENG N, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion & Management,2008, 49(10): 2748-2756. http://cn.bing.com/academic/profile?id=1974632619&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    GHOSH C R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Che-mical Reviews, 2012, 112(4): 2373-2433. doi: 10.1021/cr100449n
    [6]
    LEE J, JEONG B, OCON J D. Oxygen electrocatalysis in chemical energy conversion and storage technologies[J]. Current Applied Ph-ysics, 2013, 13(2): 309-321. doi: 10.1016/j.cap.2012.08.008
    [7]
    赵培,木士春,潘牧,等.PEMFC组件CCM制备方法的评述[J].电池,2005,35(6):480-482. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200506027.htm
    [8]
    FIERRO S, KAPAłk A, COMNINELLIS C. Electrochemical compa-rison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution[J]. Electrochemistry Communications, 2010, 12(1): 172-174. doi: 10.1016/j.elecom.2009.11.018
    [9]
    XU J, MIAO R, ZHAO T, et al. A novel catalyst layer with hydrophilic-hydrophobic meshwork and pore structure for solid polymer electrolyte water electrolysis[J]. Electrochemistry Comm-unications, 2011, 13(5): 437-439. doi: 10.1016/j.elecom.2011.02.014
    [10]
    LIU G, XU J, JIANG J, et al. Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange memb-rane liquid water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1914-1923. doi: 10.1016/j.ijhydene.2013.11.062
    [11]
    SU H, BLADERGROEN B J, PASUPATHI S, et al. Performance investigation of membrane electrode assemblies for hydrogen production by solid polymer electrolyte water eelectrolysis[J]. International Journal of Electrochemical Science, 2012, 7(5):4223-4234. http://cn.bing.com/academic/profile?id=1990461538&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    ASIER G U, DIMITRIOS P, KEITH S. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Re-view[J]. International Journal of Hydrogen Energy, 2012, 37(14):3358-3372. http://cn.bing.com/academic/profile?id=1979925660&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    NAVARRO R M, PENA M A, FIERRO J L G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass[J]. Chemical Reviews, 2007, 38(50): 3952-3991. http://cn.bing.com/academic/profile?id=2014846755&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hy-drogen Energy, 2013,38(12): 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151
    [15]
    FATHOLLAHI F, JAVANBAKHT M, NOROUZI P, et al. Com-parison of morphology, stability and electrocatalytic properties of Ru0.3Ti0.7O2 and Ru0.3Ti0.4Ir0.3O2 coated titanium anodes[J]. Rus-sian Journal of Electrochemistry, 2011, 47(11): 1281-1286. doi: 10.1134/S1023193511110061
    [16]
    CHENG J, ZHANG H, CHEN G, et al. Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis[J]. Electrochimica Acta, 2009, 54(26): 6250-6256. doi: 10.1016/j.electacta.2009.05.090
    [17]
    HU W, WANG Y, HU X, et al. Three-dimensional ordered macro-porous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium[J]. Journal of Materials Chemistry, 2012, 22(13):6010-6016. doi: 10.1039/c2jm16506f
    [18]
    ARDIZZONE S, FREGONARA G, TRASATTI S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267. doi: 10.1016/0013-4686(90)85068-X
    [19]
    MARSHALL A T, HAVERKAMP R G. Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles[J]. Ele-ctrochimica Acta, 2010, 55(6): 1978-1984. doi: 10.1016/j.electacta.2009.11.018
    [20]
    XU J, LIU G, LI J, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction[J]. Electrochimica Acta, 2012, 59: 105-112. doi: 10.1016/j.electacta.2011.10.044
    [21]
    XU J, MENG W, LIU G, et al. The physical-chemical properties and electrocatalytic performance of iridium oxide in oxygen evolution[J]. Electrochimica Acta, 2011, 56(27): 10223-10230. doi: 10.1016/j.electacta.2011.09.024
    [22]
    LIU G, XU J, JIANG J, et al. Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange membrane liq-uid water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1914-1923. doi: 10.1016/j.ijhydene.2013.11.062
  • Related Articles

    [1]SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [4]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [5]WANG Bingbing, XIE Gang, YU Xiaohua, TIAN Lin, LIN Lin, YANG Ni. Research progress of oxygen evolution noble metal coated titanium anode[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2021.01.001
    [6]XIAO Zongliang, WANG Bingqi, XU Yusong, ZHOU Jiaxi, CUI Lijiang, YOU Weixiong. Synthesis of Yb3+ and Er+ doped Y2Ti2O7 phosphor and up-conversion luminescence mechanism[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.06.014
    [7]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [8]LU Yang, GUO Zhancheng, GAO Jintao, ZHAO Shiqiang, DU Kaiping. Effect of rolling water cooling rate on nano-carbide precipitates and preciptation strengthening of Ti microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 56-61. DOI: 10.13264/j.cnki.ysjskx.2016.06.010
    [9]PENG Xian_hong, XIU De_jiang, ZHANG Hong_ke. The Test and Application of MVS High Frequency Vibrating Mesh Screen in Dahushan Ore Dressing Plant[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 20-21,37.
    [10]FENG Ba-xian. A Research for the Life of Electrolysing Pot of Producing Lanthanum Metal by Electrolysing[J]. Nonferrous Metals Science and Engineering, 2000, 14(1): 31-32.

Catalog

    Article Metrics

    Article views (79) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return