Citation: | HUANG Min, LIU Gaoyang, WANG Xindong. Synthesis and performance of multilayered titanium mesh oxygen evolution anode in polymer exchange membrane water electrolysis[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 1-5. DOI: 10.13264/j.cnki.ysjskx.2016.03.001 |
[1] |
GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175. doi: 10.1016/j.ijhydene.2005.04.038
|
[2] |
GRIGORIEV S A. High pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728. doi: 10.1016/j.ijhydene.2010.03.058
|
[3] |
王海燕,刘志祥,毛宗强,等. SPE电解池催化剂载体的研究[J].化工新型材料,2009,37(1):32-33. http://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901012.htm
|
[4] |
MENG N, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion & Management,2008, 49(10): 2748-2756. http://cn.bing.com/academic/profile?id=1974632619&encoded=0&v=paper_preview&mkt=zh-cn
|
[5] |
GHOSH C R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Che-mical Reviews, 2012, 112(4): 2373-2433. doi: 10.1021/cr100449n
|
[6] |
LEE J, JEONG B, OCON J D. Oxygen electrocatalysis in chemical energy conversion and storage technologies[J]. Current Applied Ph-ysics, 2013, 13(2): 309-321. doi: 10.1016/j.cap.2012.08.008
|
[7] |
赵培,木士春,潘牧,等.PEMFC组件CCM制备方法的评述[J].电池,2005,35(6):480-482. http://www.cnki.com.cn/Article/CJFDTOTAL-DACI200506027.htm
|
[8] |
FIERRO S, KAPAłk A, COMNINELLIS C. Electrochemical compa-rison between IrO2 prepared by thermal treatment of iridium metal and IrO2 prepared by thermal decomposition of H2IrCl6 solution[J]. Electrochemistry Communications, 2010, 12(1): 172-174. doi: 10.1016/j.elecom.2009.11.018
|
[9] |
XU J, MIAO R, ZHAO T, et al. A novel catalyst layer with hydrophilic-hydrophobic meshwork and pore structure for solid polymer electrolyte water electrolysis[J]. Electrochemistry Comm-unications, 2011, 13(5): 437-439. doi: 10.1016/j.elecom.2011.02.014
|
[10] |
LIU G, XU J, JIANG J, et al. Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange memb-rane liquid water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1914-1923. doi: 10.1016/j.ijhydene.2013.11.062
|
[11] |
SU H, BLADERGROEN B J, PASUPATHI S, et al. Performance investigation of membrane electrode assemblies for hydrogen production by solid polymer electrolyte water eelectrolysis[J]. International Journal of Electrochemical Science, 2012, 7(5):4223-4234. http://cn.bing.com/academic/profile?id=1990461538&encoded=0&v=paper_preview&mkt=zh-cn
|
[12] |
ASIER G U, DIMITRIOS P, KEITH S. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Re-view[J]. International Journal of Hydrogen Energy, 2012, 37(14):3358-3372. http://cn.bing.com/academic/profile?id=1979925660&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
NAVARRO R M, PENA M A, FIERRO J L G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass[J]. Chemical Reviews, 2007, 38(50): 3952-3991. http://cn.bing.com/academic/profile?id=2014846755&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hy-drogen Energy, 2013,38(12): 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151
|
[15] |
FATHOLLAHI F, JAVANBAKHT M, NOROUZI P, et al. Com-parison of morphology, stability and electrocatalytic properties of Ru0.3Ti0.7O2 and Ru0.3Ti0.4Ir0.3O2 coated titanium anodes[J]. Rus-sian Journal of Electrochemistry, 2011, 47(11): 1281-1286. doi: 10.1134/S1023193511110061
|
[16] |
CHENG J, ZHANG H, CHEN G, et al. Study of IrxRu1-xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis[J]. Electrochimica Acta, 2009, 54(26): 6250-6256. doi: 10.1016/j.electacta.2009.05.090
|
[17] |
HU W, WANG Y, HU X, et al. Three-dimensional ordered macro-porous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium[J]. Journal of Materials Chemistry, 2012, 22(13):6010-6016. doi: 10.1039/c2jm16506f
|
[18] |
ARDIZZONE S, FREGONARA G, TRASATTI S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta, 1990, 35(1): 263-267. doi: 10.1016/0013-4686(90)85068-X
|
[19] |
MARSHALL A T, HAVERKAMP R G. Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles[J]. Ele-ctrochimica Acta, 2010, 55(6): 1978-1984. doi: 10.1016/j.electacta.2009.11.018
|
[20] |
XU J, LIU G, LI J, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction[J]. Electrochimica Acta, 2012, 59: 105-112. doi: 10.1016/j.electacta.2011.10.044
|
[21] |
XU J, MENG W, LIU G, et al. The physical-chemical properties and electrocatalytic performance of iridium oxide in oxygen evolution[J]. Electrochimica Acta, 2011, 56(27): 10223-10230. doi: 10.1016/j.electacta.2011.09.024
|
[22] |
LIU G, XU J, JIANG J, et al. Nanosphere-structured composites consisting of Cs-substituted phosphotungstates and antimony doped tin oxides as catalyst supports for proton exchange membrane liq-uid water electrolysis[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1914-1923. doi: 10.1016/j.ijhydene.2013.11.062
|
[1] | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
[2] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[3] | GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009 |
[4] | GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010 |
[5] | WANG Bingbing, XIE Gang, YU Xiaohua, TIAN Lin, LIN Lin, YANG Ni. Research progress of oxygen evolution noble metal coated titanium anode[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2021.01.001 |
[6] | XIAO Zongliang, WANG Bingqi, XU Yusong, ZHOU Jiaxi, CUI Lijiang, YOU Weixiong. Synthesis of Yb3+ and Er+ doped Y2Ti2O7 phosphor and up-conversion luminescence mechanism[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 87-91. DOI: 10.13264/j.cnki.ysjskx.2019.06.014 |
[7] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[8] | LU Yang, GUO Zhancheng, GAO Jintao, ZHAO Shiqiang, DU Kaiping. Effect of rolling water cooling rate on nano-carbide precipitates and preciptation strengthening of Ti microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 56-61. DOI: 10.13264/j.cnki.ysjskx.2016.06.010 |
[9] | PENG Xian_hong, XIU De_jiang, ZHANG Hong_ke. The Test and Application of MVS High Frequency Vibrating Mesh Screen in Dahushan Ore Dressing Plant[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 20-21,37. |
[10] | FENG Ba-xian. A Research for the Life of Electrolysing Pot of Producing Lanthanum Metal by Electrolysing[J]. Nonferrous Metals Science and Engineering, 2000, 14(1): 31-32. |