Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Yuhui, YU Rongmin, OUYANG Yuping, SU Zhengfu, SHAO Chunxin, WANG Zhijian, LIU Jibo. Preparation of size controllable yttrium oxide powder[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 22-25. DOI: 10.13264/j.cnki.ysjskx.2015.03.004
Citation: LIU Yuhui, YU Rongmin, OUYANG Yuping, SU Zhengfu, SHAO Chunxin, WANG Zhijian, LIU Jibo. Preparation of size controllable yttrium oxide powder[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 22-25. DOI: 10.13264/j.cnki.ysjskx.2015.03.004

Preparation of size controllable yttrium oxide powder

More Information
  • Received Date: December 03, 2014
  • Published Date: June 29, 2015
  • Yttrium oxide powder was prepared by ammonia-oxalic acid two steps method. The cental particle size (D50) was controlled to be 1.00~2.00 μm with good dispersibility. The effects of precipitant concentration, material concentration, reaction temperature, feeding rate and pH on the medium particle size of yttrium oxide powder were studied. Laser particle analyzer, BET instrument and scanning electron microscope were used to analyze the particle size and specific surface area of yttrium oxide powder. The results show that when the concentration of ammonium hydroxide is 1.0 mol/L, the mass concentration of oxalic acid is 10 %, the dropping speed is 20 mL/min, the temperature of oxalic acid solution is 80 ℃, the pH of the solution precipitated by ammonium hydroxide is 7~8 and the pH of the solution precipitated by oxalic acid is below 1, the central particle size (D50) and specificsurface area of the prepared yttrium oxide powder are controlled to be 1.00~2.00 μm and 3.2~13.3 m2/g by adjusting the concentration of yttrium nitrate in the range of 0.4~0.8 mol/L.
  • [1]
    Mei L F, Chen G Y, Zhang B, et al.Measurement of YAG laser absorptance by artificial diamond and cubic boron nitride[J].Optics and Laser Technology, 2009, 41(6): 770-777. doi: 10.1016/j.optlastec.2008.12.011
    [2]
    Lupei A, Lupei V, Taira T, et al.Energy transfer processes of Nd3+ in Y2O3 ceramic[J].Journal of Luminescence, 2003, 102/103: 72-76. doi: 10.1016/S0022-2313(02)00512-4
    [3]
    霍地, 孙旭东, 刘亦农, 等.超细粉体制备Nd, Y2O3透明陶瓷[J].中国稀土学报, 2008, 26(1): 56-60. http://www.cqvip.com/QK/71135X/201107/26692843.html
    [4]
    Xu J P, Lo B, Jiang Y H, et al.Stability of yttria stabilized zirconia in molten oxy-fluorite flux for the production of silicon with the solid oxide membrane process[J].Journal of the European Ceramic Society, 2014, 34(15): 3887-3896. doi: 10.1016/j.jeurceramsoc.2014.04.028
    [5]
    李艳, 曹仕秀, 朱达川.机械力固相化学反应法制备纳米氧化钇[J].四川稀土, 2007(3): 29-32. http://www.cnki.com.cn/Article/CJFDTOTAL-SCXT200703012.htm
    [6]
    高海炼, 陈伟凡, 李凤生, 等.湿固相机械化学法制备超细氧化钇的研究[J].稀有金属, 2007, 30(6): 795-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS200606015.htm
    [7]
    徐国纲, 张旭东, 何文, 等.溶胶-凝胶法制备纳米Y2O3粉体[J].材料科学与工艺, 2008, 16(2): 247-249. http://d.wanfangdata.com.cn/Periodical/clkxygy200802025
    [8]
    王介强, 陶珍东, 孙旭东.无机溶胶凝胶法制取Y2O3纳米微粒[J].中国稀土学报, 2003, 21(1): 15-18. http://www.cqvip.com/Main/Detail.aspx?id=12081216
    [9]
    Liu Y, Gao L.Low-temperature synthesis of nanocrystalline yttrium aluminum garnet powder using triethanolamine[J].Journal of the American Ceramic Society, 2003, 86(10): 1651-1653. doi: 10.1111/jace.2003.86.issue-10
    [10]
    Chen W F, Li F S, Liu L L, et al.Synthesis of nano-sized yttria via a sol-gel process based on hydrated yttrium nitrate and ethylene glycol and its catalytic performance for thermal decomposition of NH4ClO4[J].Journal of Rare Earths, 2006, 24(5): 543-548. doi: 10.1016/S1002-0721(06)60160-9
    [11]
    王莹, 赵高扬.水热合成棒状氧化钇粉体的生长过程和生长机理的研究[J].功能材料, 2013, 5(44): 305-308. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201305011.htm
    [12]
    Byrappaa K, Chandrashekar C K.Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal conditions[J].Journal of Crystal Growth, 2007, 306(1): 94-101. doi: 10.1016/j.jcrysgro.2007.03.055
    [13]
    Li N, Yanagisawa K.Controlling the morphology of yttrium oxide through different precursors synthesized by hydrothermal method[J].Journal of Solid State Chemistry, 2008, 181(8): 1738-1743. doi: 10.1016/j.jssc.2008.03.031
    [14]
    赵新宇, 张煜, 古宏晨, 等.喷雾热解制备稀土超细粉末(Ⅰ)氧化钇粒子形态与形成机理[J].高等学校化学学报, 1998, 19(4): 507-510. http://www.cnki.com.cn/Article/CJFDTOTAL-GDXH804.002.htm
    [15]
    冯君, 范益群, 徐南平.预混火焰中喷雾热分解制备纳米氧化钇[J].南京工业大学学报(自然科学版), 2006, 28(4): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200604000.htm
    [16]
    Sordelet D, Akinc M.Preparation of spherical, monosized Y2O3 precursor particles[J].Journal of Colloid and Interface Science, 1988, 122(1): 47-59. doi: 10.1016/0021-9797(88)90286-X
    [17]
    Huang M L, Guo K, Man Z Y, et al.Morphology controllable synthesis of yttrium oxide-based phosphors from yttrium citrate precursors[J].Journal of Rare Earth, 2011, 29(9): 830-836. doi: 10.1016/S1002-0721(10)60551-0
    [18]
    霍地, 孙旭东, 修稚萌, 等.制备工艺对超细氧化钇粉体形态与烧结性的影响[J].中国稀土学报, 2007, 25(5): 566-572. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200705008.htm
    [19]
    贺伦燕, 李南萍.用碳酸氢铵沉淀制备晶状碳酸钇的机理研究[J].稀有金属与硬质合金, 2002, 30(1): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200201000.htm
    [20]
    刘志强, 李杏英, 梁振锋.碳铵沉淀法制备纳米氧化钇过程中氯离子的行为[J].中国稀土学报, 2005, 23(3): 373-377. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200503030.htm
    [21]
    张顺利, 黄小卫, 崔大立, 等.碳酸氢铵沉淀法制备氧化钇粉体时反应条件对产物粒度的影响[J].中国稀土学报, 2003, 21(6): 643-646. http://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200306007.htm
    [22]
    秦海明, 刘宏, 桑元华, 等.合成条件对尿素沉淀法制备氧化钇纳米微球的影响[J].人工晶体学报, 2011, 40(6): 1455-1459. http://www.cnki.com.cn/Article/CJFDTOTAL-RGJT201106020.htm
    [23]
    马莹, 李莉娜, 王宝荣, 等.草酸沉淀法制备大颗粒氧化钇工艺研究[J].稀有金属, 2010, 34(6): 950-954. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201006029.htm
    [24]
    郭贵宝, 云峰, 安胜利.炭吸附氨水沉淀法制备氧化钇纳米粒子及表征木[J].无机盐工业, 2008, 40(10): 12-14. http://www.cnki.com.cn/Article/CJFDTOTAL-WJYG200810003.htm
  • Related Articles

    [1]CHEN Fei, ZHANG Shibin, XIE Yunzhong, WANG Junfeng. Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 887-894. DOI: 10.13264/j.cnki.ysjskx.2023.06.017
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]ZHU Bingyao, JIA Xiaobo. Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 511-517. DOI: 10.13264/j.cnki.ysjskx.2023.04.009
    [5]ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
    [6]SHI Zhenxue, LIU Shizhong, ZHAO Jinqian. Influence of Mo content on microstructure and stability of the fourth-generation single crystal superalloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2019.01.011
    [7]YU Zhaofu, CHEN Tao, LIU Zheng. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2017.04.010
    [8]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [9]PENG Lijun, XIE Haofeng, YIN Xiangqian, YANG Zhen, MI Xujun. Effects of homogenization treatment on the microstructure of Cu-Cr-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 68-73. DOI: 10.13264/j.cnki.ysjskx.2014.05.012
    [10]XU Bingsheng, WU Hu, HAN Lin, CHEN Junwei, YUAN Zhangfu. Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu melting on the inclined Cu substrate[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 7-12. DOI: 10.13264/j.cnki.ysjskx.2014.04.002
  • Cited by

    Periodical cited type(5)

    1. 霍彦廷,舒庆. 双Z型异质结BiOI/MoO_3/g-C_3N_4的构建及其光催化性能研究. 有色金属科学与工程. 2023(01): 74-85 . 本站查看
    2. 邱汉迅,李文露. 非贵金属基催化剂用于催化降解有机污染物的研究进展. 有色金属材料与工程. 2022(02): 1-10 .
    3. 王颖,杨传玺,王小宁,朱青,董文平,杨诚,吕豪杰,王炜亮,樊玉琪. 二维光催化材料研究进展. 有色金属科学与工程. 2021(02): 30-42 . 本站查看
    4. 张萌迪,陈范云,马小帅,杨凯,余长林. 纳微结构Ag_2CO_3光催化材料的制备及其在光催化的应用. 有色金属科学与工程. 2019(02): 52-61 . 本站查看
    5. 宋杨,王燕刚,康诗飞,崔立峰. 含金属元素的常温CO_2固体吸附剂研究进展. 有色金属材料与工程. 2019(06): 47-52 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (38) PDF downloads (8) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return