Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHU Bingyao, JIA Xiaobo. Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 511-517. DOI: 10.13264/j.cnki.ysjskx.2023.04.009
Citation: ZHU Bingyao, JIA Xiaobo. Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 511-517. DOI: 10.13264/j.cnki.ysjskx.2023.04.009

Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration

More Information
  • Received Date: May 06, 2022
  • Revised Date: August 24, 2022
  • Available Online: August 23, 2023
  • SiO2 was added into 7075 alloys by ultrasonic vibration to form Al2O3 particles in situ. The microstructure, phase composition and corrosion resistance of the alloy were studied and analyzed by XRD, SEM, TEM, immersion corrosion tests and electrochemical tests, respectively. The results showed that ultrasonic vibration and in situ formation of Al2O3 particles could refine the microstructure of the alloy and disperse the agglomerated Al2O3 particles evenly, and Al2O3 particles could be used as the core of heterogeneous nucleation to improve the nucleation rate. The Al2O3(p)/7075 alloys with ultrasonic vibration are mainly composed of Al, Al2O3, Al7Cu2Fe, Al2CuMg and Mg2Zn phases. Compared with the 7075 alloys, its weight loss corrosion rate and hydrogen evolution corrosion rate decreased, the white corrosion products reduced, and the degree of pitting and intergranular corrosion weakened. The self-corrosion potential (Ecorr) and pitting potential (Ep)increased, and the corrosion current density (Icorr) decreased. The improvement in the corrosion resistance of the Al2O3(p)/7075 alloy with ultrasonic vibration is due to the coordination of the slowing corrosion rate caused by microstructure refinement and the increase in corrosion potential caused by the in situ formation of Al2O3 particles.
  • [1]
    张亮, 李茂军, 司乃潮. 复合热处理对7075铝合金组织和力学性能的影响[J]. 有色金属工程, 2019, 9(9): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201909015.htm
    [2]
    ZHANG Y, MA J, WANG Q, et al. Study on anisotropic behavior of 7075 Al alloy after extrusion[J]. Materials Research Express, 2022, 9(2): 026508. doi: 10.1088/2053-1591/ac4fdd
    [3]
    AARABI H, ALIZADEH M. Improvement of microstructure and corrosion properties of AA7075 Al alloy by melt shearing process[J]. Materials Letters, 2020, 275(3): 128085.
    [4]
    夏华丹. 轧制变形量对汽车用7075铝合金组织和力学性能的影响[J]. 热加工工艺, 2019, 48(11): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201911027.htm
    [5]
    卢利平, 谷鹏. 热处理对汽车用7075铝合金组织和性能的影响[J]. 热加工工艺, 2016, 45(16): 208-209, 213. doi: 10.14158/j.cnki.1001-3814.2016.16.054
    [6]
    刘立博, 乔及森, 许佳敏, 等. 稀土Y对挤压态7075铝合金微观组织和力学性能的影响[J]. 有色金属工程, 2022, 12(3): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202203007.htm
    [7]
    ZOU X L, YAN H, CHEN X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(10): 2146-2155. doi: 10.1016/S1003-6326(17)60240-1
    [8]
    齐跃, 郗建豪, 林忠亮, 等. 不同时效制度对7075铝合金组织及抗应力腐蚀性能的影响[J]. 材料热处理学报, 2018, 39(11): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201811006.htm
    [9]
    王艳秋, 王岳, 陈派明, 等. 7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能[J]. 金属学报, 2011, 47(4): 455-461. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201104014.htm
    [10]
    李晓丹, 翟玉春, 邱峰, 等. 纳米SiC颗粒强化7075铝合金在NaCl溶液中的电化学腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(2): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201202014.htm
    [11]
    段盼光, 刘大海, 黎俊初. 超声振动对7075铝合金板材时效成形性能的影响[J]. 材料热处理学报, 2017, 38(8): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201708009.htm
    [12]
    彭洪美, 李晓谦, 蒋日鹏. 熔体超声处理对7050铝合金铸锭微观偏析的影响[J]. 北京理工大学学报, 2016, 36(11): 1105-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201611002.htm
    [13]
    WU R R, YUAN Z, LI Q S. Microstructure and mechanical properties of 7075 Al alloy based composites with Al2O3 nanoparticles[J]. International Journal of Cast Metals Research, 2017, 30(6): 337-340.
    [14]
    LI Q, XIA T, LAN Y, et al. Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al-20%Si alloy[J]. Journal of Alloys and Compounds, 2013, 577: 232-236.
    [15]
    SUN YH, YAN H, CHEN XH, et al. Microstructure evolution of semi-solid TiAl3/A356 composite prepared by ultrasonic vibration[J]. Rare Metal Materials and Engineering, 2019, 48(1): 24-32.
    [16]
    SUN Y H, YAN H, XIONG J J. Al3Ti/ADC12 composite synthesized by ultrasonic chemistry in situ reaction[J]. Science and Engineering of Composite Materials, 2020, 27(1): 10-18.
    [17]
    吴钰. 超声振动对7050铝合金熔体凝固动力学过冷度的影响[D]. 长沙: 中南大学, 2009.
    [18]
    张瑞英, 史志铭, 李红霞. SiO2原位制备Al2O(3P)/Al-Si复合材料[J]. 特种铸造及有色合金, 2010, 30(7): 668-671, 587. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201007043.htm
    [19]
    牟姝妤, 陈刚, 张振亚, 等. Al-SiO2体系反应生成纳米Al2O3p/Al复合材料的机理[J]. 特种铸造及有色合金, 2020, 40(8): 883-887. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ202008025.htm
    [20]
    ZOU Y, WANG J, ZHENG Y Y. Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corrosion Science, 2011, 53(1): 208-216.
    [21]
    LIU C, LIU Y, MA L, et al. Effects of solution treatment on microstructure and high-cycle fatigue properties of 7075 aluminum alloy[J]. Metals, 2017, 7(6): 193-208.
    [22]
    张立杰, 闫洪. 超声振动功率对2024铝合金显微组织、显微硬度及耐腐蚀性能的影响[J]. 锻压技术, 2021, 46(9): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE202109020.htm
    [23]
    MOON S M, PYUN S I. Faradaic reactions and their effects on dissolution of the natural oxide film on pure aluminum during cathodic polarization in aqueous solutions[J]. Corrosion, 1998, 54(7): 546-552.
    [24]
    史冠勇, 张廷安, 牛丽萍, 等. Al2O3和Cr2O3对自蔓延冶金法制备CuCr合金冶炼渣性能的影响[J]. 有色金属科学与工程, 2019, 10(1): 8-12. doi: 10.13264/j.cnki.ysjskx.2019.01.002
    [25]
    李晓含, 贺嘉宁, 苏睿明, 等. 双级时效对7075合金应力腐蚀性能影响[J]. 有色金属科学与工程, 2022, 13(3): 69-75. doi: 10.13264/j.cnki.ysjskx.2022.03.010
  • Related Articles

    [1]ZHANG Tao, ZOU Jinchao, HUANG Zhiquan, ZHAO Chunjiang, WANG Junpeng. Effect of rolling temperature on the corrosion resistance of AZ61 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 473-480. DOI: 10.13264/j.cnki.ysjskx.2023.04.005
    [2]ZHANG Wangcheng, LI Qiang, HUANG Cong, ZENG Xianshan. Effects of solid solution time on microstructure and properties of the UNS N10276 welded tube[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 88-92. DOI: 10.13264/j.cnki.ysjskx.2022.02.012
    [3]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [4]XU Chunting, GUO Fanghe, ZHANG Hui, WU Ying, WANG Richu, CAI Zhiyong. Microstructure and properties of spray deposited Al-12Si-0.6Mg alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 43-49. DOI: 10.13264/j.cnki.ysjskx.2021.02.006
    [5]HUANG Jingming, WANG Zhaowen, LIU Zengwei, TIAN Yabin, YE Changmei, YANG Shaohua. Analysis of local corrosion of 7075 aluminum alloy by SECM[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 14-20. DOI: 10.13264/j.cnki.ysjskx.2019.03.003
    [6]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
    [7]LIN Xiangfei, KANG Wei, LI Hongying. Effect of boron and rare earth elements on corrosion property of aluminum cathode plate[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 42-47. DOI: 10.13264/j.cnki.ysjskx.2017.03.007
    [8]LU Zhicheng LI Yongliang, ZHU Maohua, LI Maowang, YANG Zhanbing, WANG Fuming, LIU Zhenlin, WANG Fuming. The effect of Al content on the corrosion resistance of Pb-Al alloys[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 52-56. DOI: 10.13264/j.cnki.ysjskx.2015.05.010
    [9]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.

Catalog

    Article Metrics

    Article views (115) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return