Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YU Zhaofu, CHEN Tao, LIU Zheng. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2017.04.010
Citation: YU Zhaofu, CHEN Tao, LIU Zheng. Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2017.04.010

Al-Si alloy microstructure under ultrasonic condition and fractal characteristics of its isothermal microstructure

More Information
  • Received Date: January 11, 2017
  • Published Date: August 30, 2017
  • The microstructural evolution of ZL101 semi-solid primary α-Al under ultrasonic treatment and isothermal treatment was investigated via ultrasonic stirring and isothermal process.On this basis, the relation with the conventional description method and the focus and the shortcomings were analyzed using box-counting dimension in describing α-Al morphology microstructure. The results show that the ultrasonic field has significant effect on the primary structure of ZL101, and the microstructure of 585 ℃ is optimal (equal-area-circle diameter is 131.45 μm, the shape factor is 1.479 and the solid fraction is 0.67); when the ZL101 semi-solid morphology is described on the fractal dimension, the box-counting dimension can be well integrated as a comprehensive expression of the solid-phase ratio and the shape factor, while the correlation degree with the equal circle diameter is minuteness.
  • [1]
    ATKINSON H V. Modelling the semisolid processing of metallic alloys[J]. Progress in Materials Science, 2005, 50(3): 341-412. doi: 10.1016/j.pmatsci.2004.04.003
    [2]
    FAN Z. Semisolid metal processing[J]. International Materials Reviews, 2002, 47(2): 1-37. doi: 10.1179/095066001225001076
    [3]
    WANNASIN J, CANYOOK R, BURAPA R, et al. Evaluation of solid fraction in a rheocast aluminum die casting alloy by a rapid quenching method[J]. Scripta Mater, 2008, 58: 1091-1094. http://www.sciencedirect.com/science/article/pii/S1359646208005502
    [4]
    周全.低脉冲电压参数对半固态AZ91D镁合金初生相的影响[J].铸造, 2009, 58(9): 899-902. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zzzz200909006&dbname=CJFD&dbcode=CJFQ
    [5]
    刘政, 谌庆春, 许鹤君, 等.稀土Y在电磁搅拌条件下对半固态ZL101铝合金初生α相的影响[J].有色金属科学与工程, 2013, 4(6): 92-98. http://www.xml-data.org/YSJSYKXGC/html/2013060018.htm
    [6]
    DAS A, KOTADIA H R. Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy[J]. Mater Chem Phys, 2011, 125: 853-859. doi: 10.1016/j.matchemphys.2010.09.035
    [7]
    FLEMINGS M C. Behavior of metal alloys in the semisolid state[J]. metallurgical Transaction A, 1991, 22 (5): 957-981. doi: 10.1007/BF02661090
    [8]
    张玲, 周荣锋, 任海.半固态浆料制备中交变磁场对过流熔体的作用[J].特种铸造及有色合金, 2015, 35(6): 602-604. http://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201506013.htm
    [9]
    白光珠, 余昭福, 刘政, 等.超声波搅拌时间对原位自生Mg2Si/Al基复合材料凝固组织和力学性能的影响[J].有色金属材料与工程, 2016, 7(2): 14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201602003.htm
    [10]
    董连科, 分形理论及其应用[M].沈阳:辽宁科技出版社, 1991, 30.
    [11]
    雷进生, 夏磊, 王乾峰, 等.非均匀地层地质剖面的随机预测模型[J].地下空间与工程学报, 2016, 12(1): 84-89. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=base201601014&dbname=CJFD&dbcode=CJFQ
    [12]
    孙力玲, 董连科, 张济山, 等.高温合金定向凝固行为的分形分析[J].金属学报, 1993, 29(3): 115-120. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB199303003.htm
    [13]
    孙力玲, 董连科, 张静华, 等.定向凝固高温合金晶界形貌的分形描述[J].金属学报, 1994, 30(5): 200-203. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB405.002.htm
    [14]
    Qin R S, Fan Z. Theoretical study on the morphology dependence of viscosity of semisolid slurries by fractal theory[J]. Mater Science Technology, 2001, 17(7): 1149-1152.
    [15]
    刘政, 胡春晖, 于锋波, 等.低过热度浇注半固态A356合金初生相形貌分形维数的计算[J].热加工工艺, 2008, 31(21): 1-5 doi: 10.3969/j.issn.1001-3814.2008.21.001
    [16]
    李元东, 刘兴海, 李艳磊, 等. 2024变形铝合金半固态浆料在连续冷却和保温过程中的组织演变[J].中国有色金属学报, 2013, 23(11): 3015-3025. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201311001.htm
    [17]
    PANDE C S. Fractal characteristics of fractured surfaces[J]. Phil Mag Lett, 1987, 6(1): 295-297. doi: 10.1007/BF01729330
    [18]
    PHILLIPPE B, CHARLES W B, SUSUMU O, et al. Influence of image resolution and thresholding on the apparent mass fractal characteristic of preferential flow patterns in filed soils[J]. Water Resources Research, 1998, 34(11): 2783-2796. doi: 10.1029/98WR01209
    [19]
    张济忠.分形[M].北京:清华大学出版社, 1995.
    [20]
    孙霞, 吴自勤, 黄畇.分形理论及其应用[M].北京:中国科技大学出版社, 2003.
    [21]
    赵君文, 吴树森, 谢礼志.超声波振动制备ZL101铝合金半固态浆料[J].特种铸造及有色合金, 2007, 27(11): 846-850. http://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ200711013.htm
    [22]
    JIANG J F, LIN X, WANG Y, et al. Microstructural evolution of AZ61 magnesium alloy pre-deformed by ECAE during semisolid isothermal treatment[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(1): 555-563. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYSY201203013.htm
    [23]
    刘政, 黄美艳, 柯婷婷.稀土La对半固态A356初生相细化机制的研究[J].有色金属科学与工程, 2011, 2(5): 24-28. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxys201105006&dbname=CJFD&dbcode=CJFQ
    [24]
    孙兵, 张英波, 权高峰, 等. AZ80镁合金半固态等温处理过程中的组织演变[J].稀有金属材料与工程, 2016, 44(2): 404-408. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE201602027.htm
    [25]
    黄晓锋, 张玉, 秦牧岚, 等.等温热处理对Mg-6Zn-3Cu合金半固态组织演变的影响[J].材料热处理学报, 2016, 37(8) : 53-59. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201608010.htm
    [26]
    刘洪涛, 葛世荣, 朱华.微粒团聚的尺度效应及其分形表征[J].润滑与密封, 2006, 12(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200612000.htm
  • Related Articles

    [1]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [2]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [3]ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]RAO Yun-zhang, XU Ling-bin. Copper mine numerical simulation study of the impact of reverse fault on the surrounding rock stability[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 55-60. DOI: 10.13264/j.cnki.ysjskx.2012.06.011
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]WU Hui, CAI Si-jing, WANG Zhang, CHEN Wu-jiu. Numerical simulation of ventilation network and its validation in Hemushan iron mine[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 60-65. DOI: 10.13264/j.cnki.ysjskx.2012.03.013
    [8]DENG Tong-fa, WU Zhou-ming, LUO Si-hai, GUI Yong. Numerical simulation for the effect of saturated soil with changing permeability coefficient under dynamic compaction[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 57-62. DOI: 10.13264/j.cnki.ysjskx.2012.01.002
    [9]SHI Fei, HE Jian. Numerical Simulation of Surface Movement in Insufficient Mining Region[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 16-17, 30.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return