Citation: | ZHAO Fei, CHEN Zhiyuan, CHEN Hongzhi, ZHAO Shiqiang. Prediction of the density of molten MgCl2-KCl-CaCl2 ternary at 1 090 K[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2014.04.009 |
[1] |
张永键. 镁电解生产工艺学[M]. 长沙: 中南大学出版社, 2006.
|
[2] |
陈志远, 刘俊昊, 周国治. 钛氧化物熔盐电脱氧工艺用氯化物熔盐的选择[J]. 中国材料进展, 2012, 31(1): 44. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201201012.htm
|
[3] |
Alexander D T L, Schwandt C, Fray D J. The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway[J]. Electrochim Acta, 2011, 56(9): 3286. doi: 10.1016/j.electacta.2011.01.027
|
[4] |
Yasuda K, Nohira T, Ogata Y H, et al. Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode[J]. Electrochim Acta, 2005, 51(3): 561. doi: 10.1016/j.electacta.2005.05.014
|
[5] |
Castrillejo Y, Bermejo M, Pardo R, et al. Use of electrochemical techniques for the study of solubilization processes of cerium-oxide compounds and recovery of the metal from molten chlorides[J]. J Electroanal Chem, 2002, 522(2): 124. doi: 10.1016/S0022-0728(02)00717-9
|
[6] |
Chen Z Y, Liu J H, Yu Z Y, et al. Electrical conductivity of CaCl2-KCl-NaCl system at 1080K[J]. Thermochim Acta, 2012, 543: 107. doi: 10.1016/j.tca.2012.05.007
|
[7] |
Chen Z Y, Wang L J, Chou K C, et al. Comparison of different calculation methods of the new generation geometric model in the Predicting Density of the NaCl-MgCl2-CaCl2[J]. J Solution Chem, 2013, 43: 577.
|
[8] |
Janz G J, Tomkins R. NSRDS-NBS 61, IV. Physical properties data compilations relevant to energy storage. IV. Molten salts: Data on additional single and multi-component salt systems[R]. Washington: U. S. Government printing office, 1981.
|
[9] |
Janz G J. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data[J]. J Phys Chem Ref Data, 1988, 17(suppl 2): 1. http://cn.bing.com/academic/profile?id=a8afe98ef743ffeeba13f35dca4f4af8&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Grjotheim K, Holm J, Lillebuen B, et al. Densities and excess molar volumes of binary and ternary melts of MgCl2, CaCl2 and AlkCl[J]. Trans Faraday Soc, 1971, 67: 640. doi: 10.1039/TF9716700640
|
[11] |
Redlich O, Kister A. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Ind Eng Chem, 1948, 40(2): 345. doi: 10.1021/ie50458a036
|
[12] |
Chou K C. A general solution model for predicting ternary thermodynamic properties[J]. Calphad, 1995, 19(3): 315. doi: 10.1016/0364-5916(95)00029-E
|
[13] |
Chou K C, Wei S K. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries[J]. Metall Mater Trans B, 1997, 28(3): 439. doi: 10.1007/s11663-997-0110-7
|
[14] |
Chou K C. A new solution model for predicting ternary thermodynamic properties[J]. Calphad, 1987, 11(3): 293. doi: 10.1016/0364-5916(87)90048-4
|
[15] |
Zhang G H, Wang L J, Chou K C. A comparison of different geometrical models in calculating physicochemical properties of quaternary systems[J]. Calphad, 2010, 34(4): 504. doi: 10.1016/j.calphad.2010.10.004
|
[16] |
Iloukhani H, Khanlarzadeh K. Physicochemical properties of quaternary systems and comparison of different geometrical models[J]. J Chem Eng Data, 2011, 56(11): 4244. doi: 10.1021/je200873y
|
[17] |
Wang L J, Chen S L, Chou K C, et al. Calculation of density in a ternary system with a limited homogenous region using a geometric model[J]. Calphad, 2005, 29(2): 149. doi: 10.1016/j.calphad.2005.05.003
|
[18] |
Chou K C, Zhong X M, Xu K D. Calculation of physicochemical properties in a ternary system with miscibility gap[J]. Metall Mater Trans B, 2004, 35(4): 715. doi: 10.1007/s11663-004-0011-y
|
[19] |
Lide D R. CRC handbook of chemistry and physics[M]. Boca Raton: CRC press, 2004.
|
[20] |
Nasch P, Steinemann S. Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique[J]. Phys Chem Liq, 1995, 29(1): 43. doi: 10.1080/00319109508030263
|
[1] | NING Zhiqiang, TANG Zirui, LIU Jiahui, WANG Lu, ZHU Feixiao. Study on the extraction of nickel and copper from low ice nickel matte in ferric chloride solution[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 43-48. DOI: 10.13264/j.cnki.ysjskx.2022.03.006 |
[2] | CHAO Xi, ZHANG Tingan, ZHANG Yubin, LYU Guozhi, CHEN Yang. Study on the preparation of polyaluminum chloride by acid leaching of secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 1-9. DOI: 10.13264/j.cnki.ysjskx.2021.05.001 |
[3] | HAN Xiuxiu, ZHANG Tingan, LYU Guozhi, PAN Xijuan. A comparative study of alumina prepared from aluminum chloride solution by electrotransformation method and by sodium hydroxide titration method[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 16-21. DOI: 10.13264/j.cnki.ysjskx.2019.04.003 |
[4] | JIANG Pingguo, WU Pengfei, WANG Zhengbing, YAN Yongbo. Research progress of chloridizing volatilization[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 43-49. DOI: 10.13264/j.cnki.ysjskx.2016.06.008 |
[5] | YAO Wen-li, DONG Su-wei, CHEN Jin-qing, CHEN Xing-bin, LIU Ping. The Electrochemical Corrosion Behavior of Hot-dip Al-Zn Coatings in NaCl Aqueous Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 13-17. |
[6] | LUO Xu-yan, ZHU Chuan-hua, WU Bing, PENG Peng, XIA Mei-lin, REN Li-li, XIONG Dao-ling. Optimization of Synthetic Condition and Structure Characterization of Amphoteric Chloride Chitosan[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 32-37. DOI: 10.13264/j.cnki.ysjskx.2011.02.006 |
[7] | CHEN Qing-gen, ZENG Qing-yun. Study on Anti-oxidization of Cuprous Chloride[J]. Nonferrous Metals Science and Engineering, 2005, 19(2): 32-34. |
[8] | JIANG Hai_zhen, CHEN Dong_ying, XIA Jing. Study of Making RE Chloride in F_C_Ce_La Concentrates[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 24-26. |
[9] | JIAN Qi_fa, QIU Xiao_ying. The technology and productive practice of taking Nd oxide and Dy chloride out of NdFeB waste[J]. Nonferrous Metals Science and Engineering, 2001, 15(3): 26-29. |