Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHAO Fei, CHEN Zhiyuan, CHEN Hongzhi, ZHAO Shiqiang. Prediction of the density of molten MgCl2-KCl-CaCl2 ternary at 1 090 K[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2014.04.009
Citation: ZHAO Fei, CHEN Zhiyuan, CHEN Hongzhi, ZHAO Shiqiang. Prediction of the density of molten MgCl2-KCl-CaCl2 ternary at 1 090 K[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 44-48. DOI: 10.13264/j.cnki.ysjskx.2014.04.009

Prediction of the density of molten MgCl2-KCl-CaCl2 ternary at 1 090 K

More Information
  • Received Date: July 21, 2014
  • Published Date: August 30, 2014
  • Electrolyte used for magnesium production should be maintained in a proper range of densities. MgCl2-KCl-CaCl2 ternary is one of the important basal melts of the electrolyte. The new generational geometric model is employed to predict the density of the ternary at the temperature of 1 090 K. Before the prediction, the density functions of molten MgCl2-CaCl2 binary to temperature are revised based on the data of NSRDS. The excess density functions of KCl-CaCl2,MgCl2-CaCl2,KCl-MgCl2 are fitted with Redlich-Kister equation. And the similarity coefficients of the three components in the ternary are worked out. The calculation results of the model are compared with the known experimental data. The relative errors of the predicted data are in the range of 2.21 % ~0.99 %. Therefore, it is proposed that the prediction results are reliable.
  • [1]
    张永键. 镁电解生产工艺学[M]. 长沙: 中南大学出版社, 2006.
    [2]
    陈志远, 刘俊昊, 周国治. 钛氧化物熔盐电脱氧工艺用氯化物熔盐的选择[J]. 中国材料进展, 2012, 31(1): 44. http://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201201012.htm
    [3]
    Alexander D T L, Schwandt C, Fray D J. The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway[J]. Electrochim Acta, 2011, 56(9): 3286. doi: 10.1016/j.electacta.2011.01.027
    [4]
    Yasuda K, Nohira T, Ogata Y H, et al. Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode[J]. Electrochim Acta, 2005, 51(3): 561. doi: 10.1016/j.electacta.2005.05.014
    [5]
    Castrillejo Y, Bermejo M, Pardo R, et al. Use of electrochemical techniques for the study of solubilization processes of cerium-oxide compounds and recovery of the metal from molten chlorides[J]. J Electroanal Chem, 2002, 522(2): 124. doi: 10.1016/S0022-0728(02)00717-9
    [6]
    Chen Z Y, Liu J H, Yu Z Y, et al. Electrical conductivity of CaCl2-KCl-NaCl system at 1080K[J]. Thermochim Acta, 2012, 543: 107. doi: 10.1016/j.tca.2012.05.007
    [7]
    Chen Z Y, Wang L J, Chou K C, et al. Comparison of different calculation methods of the new generation geometric model in the Predicting Density of the NaCl-MgCl2-CaCl2[J]. J Solution Chem, 2013, 43: 577.
    [8]
    Janz G J, Tomkins R. NSRDS-NBS 61, IV. Physical properties data compilations relevant to energy storage. IV. Molten salts: Data on additional single and multi-component salt systems[R]. Washington: U. S. Government printing office, 1981.
    [9]
    Janz G J. Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data[J]. J Phys Chem Ref Data, 1988, 17(suppl 2): 1. http://cn.bing.com/academic/profile?id=a8afe98ef743ffeeba13f35dca4f4af8&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Grjotheim K, Holm J, Lillebuen B, et al. Densities and excess molar volumes of binary and ternary melts of MgCl2, CaCl2 and AlkCl[J]. Trans Faraday Soc, 1971, 67: 640. doi: 10.1039/TF9716700640
    [11]
    Redlich O, Kister A. Algebraic representation of thermodynamic properties and the classification of solutions[J]. Ind Eng Chem, 1948, 40(2): 345. doi: 10.1021/ie50458a036
    [12]
    Chou K C. A general solution model for predicting ternary thermodynamic properties[J]. Calphad, 1995, 19(3): 315. doi: 10.1016/0364-5916(95)00029-E
    [13]
    Chou K C, Wei S K. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries[J]. Metall Mater Trans B, 1997, 28(3): 439. doi: 10.1007/s11663-997-0110-7
    [14]
    Chou K C. A new solution model for predicting ternary thermodynamic properties[J]. Calphad, 1987, 11(3): 293. doi: 10.1016/0364-5916(87)90048-4
    [15]
    Zhang G H, Wang L J, Chou K C. A comparison of different geometrical models in calculating physicochemical properties of quaternary systems[J]. Calphad, 2010, 34(4): 504. doi: 10.1016/j.calphad.2010.10.004
    [16]
    Iloukhani H, Khanlarzadeh K. Physicochemical properties of quaternary systems and comparison of different geometrical models[J]. J Chem Eng Data, 2011, 56(11): 4244. doi: 10.1021/je200873y
    [17]
    Wang L J, Chen S L, Chou K C, et al. Calculation of density in a ternary system with a limited homogenous region using a geometric model[J]. Calphad, 2005, 29(2): 149. doi: 10.1016/j.calphad.2005.05.003
    [18]
    Chou K C, Zhong X M, Xu K D. Calculation of physicochemical properties in a ternary system with miscibility gap[J]. Metall Mater Trans B, 2004, 35(4): 715. doi: 10.1007/s11663-004-0011-y
    [19]
    Lide D R. CRC handbook of chemistry and physics[M]. Boca Raton: CRC press, 2004.
    [20]
    Nasch P, Steinemann S. Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique[J]. Phys Chem Liq, 1995, 29(1): 43. doi: 10.1080/00319109508030263
  • Related Articles

    [1]NING Zhiqiang, TANG Zirui, LIU Jiahui, WANG Lu, ZHU Feixiao. Study on the extraction of nickel and copper from low ice nickel matte in ferric chloride solution[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 43-48. DOI: 10.13264/j.cnki.ysjskx.2022.03.006
    [2]CHAO Xi, ZHANG Tingan, ZHANG Yubin, LYU Guozhi, CHEN Yang. Study on the preparation of polyaluminum chloride by acid leaching of secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 1-9. DOI: 10.13264/j.cnki.ysjskx.2021.05.001
    [3]HAN Xiuxiu, ZHANG Tingan, LYU Guozhi, PAN Xijuan. A comparative study of alumina prepared from aluminum chloride solution by electrotransformation method and by sodium hydroxide titration method[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 16-21. DOI: 10.13264/j.cnki.ysjskx.2019.04.003
    [4]JIANG Pingguo, WU Pengfei, WANG Zhengbing, YAN Yongbo. Research progress of chloridizing volatilization[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 43-49. DOI: 10.13264/j.cnki.ysjskx.2016.06.008
    [5]YAO Wen-li, DONG Su-wei, CHEN Jin-qing, CHEN Xing-bin, LIU Ping. The Electrochemical Corrosion Behavior of Hot-dip Al-Zn Coatings in NaCl Aqueous Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 13-17.
    [6]LUO Xu-yan, ZHU Chuan-hua, WU Bing, PENG Peng, XIA Mei-lin, REN Li-li, XIONG Dao-ling. Optimization of Synthetic Condition and Structure Characterization of Amphoteric Chloride Chitosan[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 32-37. DOI: 10.13264/j.cnki.ysjskx.2011.02.006
    [7]CHEN Qing-gen, ZENG Qing-yun. Study on Anti-oxidization of Cuprous Chloride[J]. Nonferrous Metals Science and Engineering, 2005, 19(2): 32-34.
    [8]JIANG Hai_zhen, CHEN Dong_ying, XIA Jing. Study of Making RE Chloride in F_C_Ce_La Concentrates[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 24-26.
    [9]JIAN Qi_fa, QIU Xiao_ying. The technology and productive practice of taking Nd oxide and Dy chloride out of NdFeB waste[J]. Nonferrous Metals Science and Engineering, 2001, 15(3): 26-29.

Catalog

    Article Metrics

    Article views (108) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return