Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013
Citation: LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013

Grinding kinetics study of nano-ceramic spheres as fine grinding medium

More Information
  • Received Date: January 30, 2021
  • Published Date: June 29, 2021
  • The grinding kinetics and boxplot were solved by using 0~0.3 mm iron concentrate as grinding samples, and the difference between grinding speed and product size distribution characteristics under different particle sizes of ceramic ball and steel forging grinding were compared and analyzed. The grinding dynamics results showed that the grinding ability of ceramic ball was stronger than that of steel forging, and the grinding ability increased significantly over time. Boxplot results showed that with the increase of grinding time, the change of 0.010~0.074 mm particle size yield in ceramic ball milling products was more concentrated, while the change of steel forging particle size yield is more discrete, and the increase of different particle size material yield of grinding products was not as uniform as that of ceramic ball milling products.
  • [1]
    刘军. 中国矿产资源的可持续发展[J]. 中国科技信息, 2006(7): 83-84. doi: 10.3969/j.issn.1001-8972.2006.07.058
    [2]
    曹明礼, 余永富. 中国矿产资源可持续发展存在的问题与对策[J]. 武汉理工大学学报, 2001(11): 80-83. doi: 10.3321/j.issn:1671-4431.2001.11.023
    [3]
    曹新元, 吕古贤, 朱裕生. 我国主要金属矿产资源及区域分布特点[J]. 资源·产业, 2004(4): 22-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU200404005.htm
    [4]
    谢杰. 某复杂难选硫化铜镍矿中矿细磨、柱机联合再选工艺应用实践研究[J]. 世界有色金属, 2017(14): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201714028.htm
    [5]
    房鑫, 杨书春, 刘广才, 等. 某磁铁矿应用塔磨机细磨工艺试验[J]. 现代矿业, 2017, 33(5): 261-262. doi: 10.3969/j.issn.1674-6082.2017.05.074
    [6]
    余永富. 我国铁矿山发展动向、选矿技术发展现状及存在的问题[J]. 矿冶工程, 2006(1): 21-25. doi: 10.3969/j.issn.0253-6099.2006.01.007
    [7]
    NORRIS C C. Some grinding tests with spheres and other shapes[J]. Trans. IMM, 1953(63): 197.
    [8]
    FARBER B Y, DURANT B, BEDESI N. Effect of media size and mechanical properties on milling efficiency and media consumption[J]. Minerals Engineering, 2010, 24(3): 367-372. http://www.sciencedirect.com/science/article/pii/S0892687511000215
    [9]
    SHI G M, ZHOU Y C, WU C B, et al. Double spherical hexagonal prism grinding media[P]. Patent No. CN104888904A, 2015-09-09.
    [10]
    IPEK H. Grinding media shape: cylpebs versus balls[J]. Mineral Processing and Extractive Metallurgy, 2006, 115(2): 91-93. doi: 10.1179/174328506X109013
    [11]
    IPEK H. The effects of grinding media shape on breakage rate[J]. Minerals Engineering, 2005, 19(1): 91-93. http://www.sciencedirect.com/science/article/pii/S0892687505001615
    [12]
    SHI F. Comparison of grinding media—Cylpebs versus balls[J]. Minerals Engineering, 2004, 17(11): 1259-1268. http://www.sciencedirect.com/science/article/pii/S0892687504001888
    [13]
    曹成超, 邵海龙, 严海军, 等. 钢锻磨矿介质在七角井铁矿细磨中的应用[J]. 现代矿业, 2020(12): 112-113. doi: 10.3969/j.issn.1674-6082.2020.12.034
    [14]
    王旭东, 肖庆飞, 张谦, 等. 球磨机细磨阶段钢段与钢球磨矿效果对比[J]. 黄金科学技术, 2020(5): 771-777. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ202005022.htm
    [15]
    HERBEST J A, LO Y C. Grinding efficiency with balls or cones as media[J]. Elsevier, 1989, 26(1/2): 141-151. http://www.sciencedirect.com/science/article/pii/0301751689900483
    [16]
    KELSALL D F, STEWART P S B, WELLER K R. Continuous grinding in a small wet ball mill. Part V. A study of the influence of media shape[J]. Elsevier, 1973, 8(1/2): 77-83. http://www.sciencedirect.com/science/article/pii/0148906274917392
    [17]
    姚伟, 白晓卿, 侯四海. 纳米陶瓷球在VTM-300立磨机中的应用试验研究[J]. 中国钼业, 2020, 44(6): 46-49.
    [18]
    江领培, 吴彩斌, 雷阿丽, 等. 纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J]. 非金属矿, 2018, 41(3): 66-68. doi: 10.3969/j.issn.1000-8098.2018.03.022
    [19]
    廖宁宁, 吴彩斌, 吴志强, 等. 纳米陶瓷球对铜硫矿磨矿和浮选的影响[J]. 有色金属工程, 2019(1): 70-76. doi: 10.3969/j.issn.2095-1744.2019.01.012
    [20]
    吴志强, 方鑫, 童佳琪, 等. 纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(5): 91-96. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201905014
    [21]
    韩彬, 莫峰, 贾素娥, 等. 纳米陶瓷球在复杂多金属矿细磨的应用研究[J]. 有色金属(选矿部分), 2019(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201904008.htm
    [22]
    段希祥. 碎矿与磨矿[M]. 2版. 北京: 冶金工业出版社, 2006.
    [23]
    王佃来, 宿爱霞. 基于箱线图的学生成绩分析[J]. 中国教育技术装备, 2019(6): 98-99. doi: 10.3969/j.issn.1671-489X.2019.06.098
    [24]
    侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708-711. doi: 10.3969/j.issn.1005-3026.2013.05.023
    [25]
    段希祥. 磨矿动力学参数与磨矿时间的关系研究[J]. 昆明工学院学报, 1988(5): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG198805002.htm
  • Related Articles

    [1]WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
    [2]TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015
    [3]YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011
    [4]WANG Qi, JIAO Shuqiang, ZHU Hongmin, ZHAO Shiqiang. SPS sintering of amorphous nano-sized Si2N2O powders and characterization of its sintered bulks[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 58-63. DOI: 10.13264/j.cnki.ysjskx.2017.05.008
    [5]LIU Chuanyi, LIU Jinhui, ZHONG Lianxiang, XU Shi, CHEN Lingkang. Soil particle size distribution characteristics of ionic rare earth:A case study in rare earth mine of Jiangwozi in Gan County[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 125-130. DOI: 10.13264/j.cnki.ysjskx.2017.04.021
    [6]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [7]ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017
    [8]WANG Hongding, WANG Guanshi, QIU Gaolei, LUO Sihai. Pore size distribution characteristics of undisturbed and re-molded soil of ion-adsorption rare earth ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 151-156. DOI: 10.13264/j.cnki.ysjskx.2016.03.025
    [9]WANG Huasheng, LIU Zuwen, ZHU Qiang, XIAO Zijie, ZHANG Nian. Characteristics of nitrides spatial distribution in the in-situ leaching mining of ion-adsorption rare earth[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 132-136. DOI: 10.13264/j.cnki.ysjskx.2014.06.023
    [10]LI Hua. SLon Centrifugal Concentrator Used in the Separation of Fine-grained Hematite[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 28-30.

Catalog

    Article Metrics

    Article views (121) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return