Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
Citation: WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014

Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium

More Information
  • Received Date: March 16, 2019
  • Published Date: October 30, 2019
  • The nano-ceramic ball, whose main component is high aluminum, is a grinding medium with a light specific gravity. The samples in the size of 1.18~2 mm, 0.6~1.18 mm, 0.3~0.6 mm are taken as the research objects, and the nano-ceramic ball and steel ball of the same diameter are used for batch grinding tests. Then the particle size distribution, grinding energy consumption distribution and energy utilization of ground products are analyzed. The tests show that the nano-ceramic ball, as a fine grinding medium, has the same particle size distribution law as the steel ball, both of which is consistent with the JK size-dependent breakage model. Under the same grinding conditions, the nano-ceramic ball is obviously inferior to the steel ball in terms of grinding production capacity. However, it might come out as a new type of fine grinding medium in vertical ball mills for its light gravity, high energy utilization and soft grinding.
  • [1]
    段希祥.选择性磨矿的应用研究[J].云南冶金, 1990 (3) :21-24. http://d.old.wanfangdata.com.cn/Thesis/Y705238
    [2]
    段希祥.矿石细磨及其工艺特征研究[J].云南冶金, 1987(6):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=317660
    [3]
    杨金林, 莫凡, 周文涛, 等.选择性磨矿研究概述[J].矿产综合利用, 2017(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201705001
    [4]
    黄万抚, 肖良.钨矿选矿工艺研究进展[J].有色金属科学与工程, 2013, 4(1):57-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201301012
    [5]
    潘新潮, 段希祥.选矿厂细磨磨矿介质的选择及研究[J].有色金属设计, 2002(4):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjssj200204007
    [6]
    凌永发, 段希祥.细磨介质形状的选择及应用研究[J].有色金属(选矿部分), 2001(6):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk200106009
    [7]
    叶景胜, 廖宁宁, 吴志强, 等.钢锻作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2018, 9(6):65-71. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806011
    [8]
    童佳琪, 方鑫, 徐今冬, 等.六棱柱作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2019, 10(3):86-91. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201903015
    [9]
    江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201803022
    [10]
    江领培, 吴彩斌, 朱亮亮, 等.某低品位萤石尾砂再选试验研究[J].非金属矿, 2018, 41(5):73-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201805023
    [11]
    佚名.金钼集团纳米陶瓷球应用于立磨机效果良好[J].有色冶金节能, 2018, 34(5):64. http://www.cqvip.com/QK/93975X/20189/676366757.html
    [12]
    江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://d.old.wanfangdata.com.cn/Periodical/fjsk201803022
    [13]
    刘卫东, 李军远, 常传平.纳米陶瓷研磨体绿色节能生产线的开发[J].陶瓷, 2017(3):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tc201703010
    [14]
    廖宁宁, 吴彩斌, 吴志强, 等.纳米陶瓷球对铜硫矿磨矿和浮选的影响[J].有色金属工程, 2019, 9(1):70-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs201901012
    [15]
    XIE W, HE Y, GE Z, et al. An analysis of the energy split for grinding coal/calcite mixture in a ball-and-race mill[J]. Miner Eng, 2016, 93:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf6b0fd48daccd1bd94f0f74d9162dd
    [16]
    SHI F, KOJOVIC T. Validation of a model for impact breakage incorporating particle size effect[J]. Int J Miner Process, 2007 (82):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54619314f91d0d60f7ab77a90a3ecc20
    [17]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 1: Ore and coal breakage characterisation[J]. Int J Miner Process, 2016(155):118-129.
    [18]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 2: Assessment of material strength and energy requirement in size reduction[J]. Int J Miner Process, 2016(157):36-45.
    [19]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 3: Comminution equipment modelling[J].Int J Miner Process, 2016(157): 60-72. https://www.onacademic.com/detail/journal_1000039528898610_86fa.html
    [20]
    段希祥, 肖庆飞.碎矿与磨矿[M].北京:冶金工业出版社, 2012
    [21]
    BOND F C. Crushing and Grinding Calculations Parts 1 and 2[J]. British Chemical Engineering, 1961, 6(378-385): 543-548.
  • Related Articles

    [1]LIU Xiaofeng, KANG Jianxiong. Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 107-112. DOI: 10.13264/j.cnki.ysjskx.2022.02.015
    [2]LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013
    [3]TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015
    [4]YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011
    [5]LIU Chuanyi, LIU Jinhui, ZHONG Lianxiang, XU Shi, CHEN Lingkang. Soil particle size distribution characteristics of ionic rare earth:A case study in rare earth mine of Jiangwozi in Gan County[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 125-130. DOI: 10.13264/j.cnki.ysjskx.2017.04.021
    [6]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [7]ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017
    [8]WANG Hongding, WANG Guanshi, QIU Gaolei, LUO Sihai. Pore size distribution characteristics of undisturbed and re-molded soil of ion-adsorption rare earth ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 151-156. DOI: 10.13264/j.cnki.ysjskx.2016.03.025
    [9]SHI Gui-ming, WU Cai-bin, XIAO Liang, LIU Yu. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 79-84. DOI: 10.13264/j.cnki.ysjskx.2013.05.012
    [10]WAN Lin-sheng, ZHOU Jie-ying. On Size Characteristics Controlling of High-purity Ta2O5 Powder[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 15-18.
  • Cited by

    Periodical cited type(1)

    1. 苗龙,聂明卿,白松,宋家辉,赵立群,王晓宇,王宁飞. 大气压射频感应等离子体热流场及涡流形态数值计算研究. 中国科学:技术科学. 2023(12): 2151-2163 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (98) PDF downloads (1) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return