Citation: | WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014 |
[1] |
段希祥.选择性磨矿的应用研究[J].云南冶金, 1990 (3) :21-24. http://d.old.wanfangdata.com.cn/Thesis/Y705238
|
[2] |
段希祥.矿石细磨及其工艺特征研究[J].云南冶金, 1987(6):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=317660
|
[3] |
杨金林, 莫凡, 周文涛, 等.选择性磨矿研究概述[J].矿产综合利用, 2017(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201705001
|
[4] |
黄万抚, 肖良.钨矿选矿工艺研究进展[J].有色金属科学与工程, 2013, 4(1):57-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201301012
|
[5] |
潘新潮, 段希祥.选矿厂细磨磨矿介质的选择及研究[J].有色金属设计, 2002(4):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjssj200204007
|
[6] |
凌永发, 段希祥.细磨介质形状的选择及应用研究[J].有色金属(选矿部分), 2001(6):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk200106009
|
[7] |
叶景胜, 廖宁宁, 吴志强, 等.钢锻作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2018, 9(6):65-71. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806011
|
[8] |
童佳琪, 方鑫, 徐今冬, 等.六棱柱作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2019, 10(3):86-91. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201903015
|
[9] |
江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201803022
|
[10] |
江领培, 吴彩斌, 朱亮亮, 等.某低品位萤石尾砂再选试验研究[J].非金属矿, 2018, 41(5):73-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201805023
|
[11] |
佚名.金钼集团纳米陶瓷球应用于立磨机效果良好[J].有色冶金节能, 2018, 34(5):64. http://www.cqvip.com/QK/93975X/20189/676366757.html
|
[12] |
江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://d.old.wanfangdata.com.cn/Periodical/fjsk201803022
|
[13] |
刘卫东, 李军远, 常传平.纳米陶瓷研磨体绿色节能生产线的开发[J].陶瓷, 2017(3):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tc201703010
|
[14] |
廖宁宁, 吴彩斌, 吴志强, 等.纳米陶瓷球对铜硫矿磨矿和浮选的影响[J].有色金属工程, 2019, 9(1):70-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs201901012
|
[15] |
XIE W, HE Y, GE Z, et al. An analysis of the energy split for grinding coal/calcite mixture in a ball-and-race mill[J]. Miner Eng, 2016, 93:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf6b0fd48daccd1bd94f0f74d9162dd
|
[16] |
SHI F, KOJOVIC T. Validation of a model for impact breakage incorporating particle size effect[J]. Int J Miner Process, 2007 (82):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54619314f91d0d60f7ab77a90a3ecc20
|
[17] |
SHI F A. Review of the applications of the JK size-dependent breakage model Part 1: Ore and coal breakage characterisation[J]. Int J Miner Process, 2016(155):118-129.
|
[18] |
SHI F A. Review of the applications of the JK size-dependent breakage model Part 2: Assessment of material strength and energy requirement in size reduction[J]. Int J Miner Process, 2016(157):36-45.
|
[19] |
SHI F A. Review of the applications of the JK size-dependent breakage model Part 3: Comminution equipment modelling[J].Int J Miner Process, 2016(157): 60-72. https://www.onacademic.com/detail/journal_1000039528898610_86fa.html
|
[20] |
段希祥, 肖庆飞.碎矿与磨矿[M].北京:冶金工业出版社, 2012
|
[21] |
BOND F C. Crushing and Grinding Calculations Parts 1 and 2[J]. British Chemical Engineering, 1961, 6(378-385): 543-548.
|
[1] | LIU Xiaofeng, KANG Jianxiong. Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 107-112. DOI: 10.13264/j.cnki.ysjskx.2022.02.015 |
[2] | LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013 |
[3] | TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015 |
[4] | YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011 |
[5] | LIU Chuanyi, LIU Jinhui, ZHONG Lianxiang, XU Shi, CHEN Lingkang. Soil particle size distribution characteristics of ionic rare earth:A case study in rare earth mine of Jiangwozi in Gan County[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 125-130. DOI: 10.13264/j.cnki.ysjskx.2017.04.021 |
[6] | HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014 |
[7] | ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017 |
[8] | WANG Hongding, WANG Guanshi, QIU Gaolei, LUO Sihai. Pore size distribution characteristics of undisturbed and re-molded soil of ion-adsorption rare earth ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 151-156. DOI: 10.13264/j.cnki.ysjskx.2016.03.025 |
[9] | SHI Gui-ming, WU Cai-bin, XIAO Liang, LIU Yu. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 79-84. DOI: 10.13264/j.cnki.ysjskx.2013.05.012 |
[10] | WAN Lin-sheng, ZHOU Jie-ying. On Size Characteristics Controlling of High-purity Ta2O5 Powder[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 15-18. |
1. |
郦超,周浩,龚丽,曾剑武. 纳米陶瓷球在普朗铜矿立式球磨机中的应用研究. 矿产保护与利用. 2025(01): 23-27 .
![]() | |
2. |
冯永艳. 尖山铁矿三段磨矿纳米陶瓷球的试验研究. 矿业工程. 2025(02): 58-61+68 .
![]() | |
3. |
李哲阳,许辉,谢峰,李龙龙,张小普,姚鑫,吴彩斌. 纳米复合瓷球作磁铁矿细磨介质磨矿特征研究. 黄金科学技术. 2024(04): 694-703 .
![]() | |
4. |
黄雯,刘曙,李鹏飞,王万平,黄轲,李超前. 纳米陶瓷球在程潮选厂二段磨矿中的应用试验. 金属矿山. 2024(10): 132-138 .
![]() | |
5. |
崔朝泽,王岩. 磨矿产品粒度优化方法研究进展. 黄金. 2023(02): 46-50 .
![]() | |
6. |
杨俊彦,孙浩杰,谷建国,张圣东,游世辉. “双碳”目标下球磨机节能降耗技术研究进展. 矿产保护与利用. 2023(01): 169-178 .
![]() | |
7. |
徐今冬,余超,陈晓锋,吴彩斌,张忠祥. 不同磨矿介质对细粒磁铁矿磨矿效果的影响. 有色金属科学与工程. 2023(04): 561-568 .
![]() | |
8. |
蒋丰祥,胡城,陈郅隆,童佳琪,沈远海,吴彩斌,桂志海. 纳米陶瓷球在铁粗精矿再磨中的应用试验. 现代矿业. 2023(09): 230-232+237 .
![]() | |
9. |
余浔. 新型细磨介质纳米瓷球技术的研究进展及应用. 有色金属工程. 2023(11): 76-81 .
![]() | |
10. |
吴彤,杨毓隆,马兆利. 陶瓷生产智能化在球磨动力节能降耗方面的应用探索. 陶瓷. 2022(05): 38-41+63 .
![]() | |
11. |
李沛,邓中诚,池慧强,赵善忠,曹钊. 细磨多粒级动力学试验与模拟. 中国粉体技术. 2022(04): 25-35 .
![]() | |
12. |
袁程方,徐涛,吴江岳恩,邵翌博,熊源,吴彩斌. 纳米复合瓷球在钨矿石细磨中磨矿特性研究. 有色金属(选矿部分). 2022(04): 86-91 .
![]() | |
13. |
黎莹,赵俊红,鲁忠臣,曾庆,杨小平,龚卓,周钰. 金属球磨与陶瓷球磨法三七超微粉碎效果分析. 现代养生. 2022(23): 2044-2047 .
![]() | |
14. |
王小玉,李志朝,袁程方,余超,程俊,吴彩斌,刘军. 磁铁矿二段磨陶瓷球磨矿特性研究. 现代矿业. 2022(11): 89-94 .
![]() | |
15. |
吴彩斌. 无钢球磨矿能耗基础及其工艺发展趋势. 中国钨业. 2022(05): 1-6 .
![]() | |
16. |
章恒兴,郑萍,凌佩红,范亚强,张忠祥,吴彩斌. 纳米陶瓷球的耐磨性能研究. 中国钨业. 2022(05): 13-18 .
![]() | |
17. |
袁程方,赖俊全,余超,黄伟生,谢加文,吴彩斌. 球磨机中钨矿石瓷球和钢球磨矿动力学对比研究. 中国钨业. 2022(05): 32-37 .
![]() | |
18. |
廖宁宁,童佳琪,段安安,徐涛,龙冰,吴彩斌. 磨矿介质对钨矿石细磨行为影响研究. 中国钨业. 2022(05): 26-31+43 .
![]() | |
19. |
方鑫,徐今冬,童佳琪,何斌全,李军,李振兴,吴彩斌. 瓷球磨矿在湖南柿竹园公司中的工业应用. 中国钨业. 2022(05): 44-49 .
![]() | |
20. |
钟久祥,曾冲,赖俊全,段安安,李爱民,黄景华,吴彩斌. 瓷球磨矿在行洛坑钨矿中的工业应用. 中国钨业. 2022(05): 50-55 .
![]() | |
21. |
曾冲,赖俊全,钟久祥,段安安,李爱民,黄景华,吴彩斌. 从钨尾矿回收长石的瓷球磨矿工艺设计. 中国钨业. 2022(05): 78-84 .
![]() | |
22. |
陈郅隆,杨昌龙,袁程方,李雨晴,董福章,陈宁青,吴彩斌. 瓷球在金属矿山中再磨作业的工业应用. 中国钨业. 2022(05): 56-62 .
![]() | |
23. |
童佳琪,廖紫鑫,朱玉华,吴季,袁程方,吴彩斌. 艾砂磨机在锂云母浮选分离的应用. 有色金属科学与工程. 2021(02): 66-71 .
![]() | |
24. |
赖俊全,向子祥,李雨晴,吴彩斌. 纳米陶瓷球作细磨介质下的磨矿动力学. 有色金属科学与工程. 2021(03): 100-105 .
![]() | |
25. |
柳晓峰,康建雄,袁程方,吴彩斌. 钢球级配对百花岭选厂钼矿石磨矿产品粒度特性的影响研究. 现代矿业. 2021(10): 120-123 .
![]() | |
26. |
刘小平. 高铝研磨瓷球在有色金属矿山应用的可行性研究. 现代矿业. 2021(12): 267-268 .
![]() |