Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
Citation: WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014

Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium

More Information
  • Received Date: March 16, 2019
  • Published Date: October 30, 2019
  • The nano-ceramic ball, whose main component is high aluminum, is a grinding medium with a light specific gravity. The samples in the size of 1.18~2 mm, 0.6~1.18 mm, 0.3~0.6 mm are taken as the research objects, and the nano-ceramic ball and steel ball of the same diameter are used for batch grinding tests. Then the particle size distribution, grinding energy consumption distribution and energy utilization of ground products are analyzed. The tests show that the nano-ceramic ball, as a fine grinding medium, has the same particle size distribution law as the steel ball, both of which is consistent with the JK size-dependent breakage model. Under the same grinding conditions, the nano-ceramic ball is obviously inferior to the steel ball in terms of grinding production capacity. However, it might come out as a new type of fine grinding medium in vertical ball mills for its light gravity, high energy utilization and soft grinding.
  • [1]
    段希祥.选择性磨矿的应用研究[J].云南冶金, 1990 (3) :21-24. http://d.old.wanfangdata.com.cn/Thesis/Y705238
    [2]
    段希祥.矿石细磨及其工艺特征研究[J].云南冶金, 1987(6):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=317660
    [3]
    杨金林, 莫凡, 周文涛, 等.选择性磨矿研究概述[J].矿产综合利用, 2017(5):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kczhly201705001
    [4]
    黄万抚, 肖良.钨矿选矿工艺研究进展[J].有色金属科学与工程, 2013, 4(1):57-61. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201301012
    [5]
    潘新潮, 段希祥.选矿厂细磨磨矿介质的选择及研究[J].有色金属设计, 2002(4):26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjssj200204007
    [6]
    凌永发, 段希祥.细磨介质形状的选择及应用研究[J].有色金属(选矿部分), 2001(6):41-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-xk200106009
    [7]
    叶景胜, 廖宁宁, 吴志强, 等.钢锻作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2018, 9(6):65-71. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201806011
    [8]
    童佳琪, 方鑫, 徐今冬, 等.六棱柱作细磨介质下的磨矿能耗与粒度分布特征[J].有色金属科学与工程, 2019, 10(3):86-91. http://d.old.wanfangdata.com.cn/Periodical/jxysjs201903015
    [9]
    江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201803022
    [10]
    江领培, 吴彩斌, 朱亮亮, 等.某低品位萤石尾砂再选试验研究[J].非金属矿, 2018, 41(5):73-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201805023
    [11]
    佚名.金钼集团纳米陶瓷球应用于立磨机效果良好[J].有色冶金节能, 2018, 34(5):64. http://www.cqvip.com/QK/93975X/20189/676366757.html
    [12]
    江领培, 吴彩斌, 雷阿丽, 等.纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J].非金属矿, 2018, 41(3):66-68. http://d.old.wanfangdata.com.cn/Periodical/fjsk201803022
    [13]
    刘卫东, 李军远, 常传平.纳米陶瓷研磨体绿色节能生产线的开发[J].陶瓷, 2017(3):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tc201703010
    [14]
    廖宁宁, 吴彩斌, 吴志强, 等.纳米陶瓷球对铜硫矿磨矿和浮选的影响[J].有色金属工程, 2019, 9(1):70-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs201901012
    [15]
    XIE W, HE Y, GE Z, et al. An analysis of the energy split for grinding coal/calcite mixture in a ball-and-race mill[J]. Miner Eng, 2016, 93:1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf6b0fd48daccd1bd94f0f74d9162dd
    [16]
    SHI F, KOJOVIC T. Validation of a model for impact breakage incorporating particle size effect[J]. Int J Miner Process, 2007 (82):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54619314f91d0d60f7ab77a90a3ecc20
    [17]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 1: Ore and coal breakage characterisation[J]. Int J Miner Process, 2016(155):118-129.
    [18]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 2: Assessment of material strength and energy requirement in size reduction[J]. Int J Miner Process, 2016(157):36-45.
    [19]
    SHI F A. Review of the applications of the JK size-dependent breakage model Part 3: Comminution equipment modelling[J].Int J Miner Process, 2016(157): 60-72. https://www.onacademic.com/detail/journal_1000039528898610_86fa.html
    [20]
    段希祥, 肖庆飞.碎矿与磨矿[M].北京:冶金工业出版社, 2012
    [21]
    BOND F C. Crushing and Grinding Calculations Parts 1 and 2[J]. British Chemical Engineering, 1961, 6(378-385): 543-548.
  • Related Articles

    [1]LIU Xiaofeng, KANG Jianxiong. Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 107-112. DOI: 10.13264/j.cnki.ysjskx.2022.02.015
    [2]LAI Junquan, XIANG Zixiang, LI Yuqing, WU Caibin. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100-105. DOI: 10.13264/j.cnki.ysjskx.2021.03.013
    [3]TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015
    [4]YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011
    [5]LIU Chuanyi, LIU Jinhui, ZHONG Lianxiang, XU Shi, CHEN Lingkang. Soil particle size distribution characteristics of ionic rare earth:A case study in rare earth mine of Jiangwozi in Gan County[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 125-130. DOI: 10.13264/j.cnki.ysjskx.2017.04.021
    [6]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [7]ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017
    [8]WANG Hongding, WANG Guanshi, QIU Gaolei, LUO Sihai. Pore size distribution characteristics of undisturbed and re-molded soil of ion-adsorption rare earth ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 151-156. DOI: 10.13264/j.cnki.ysjskx.2016.03.025
    [9]SHI Gui-ming, WU Cai-bin, XIAO Liang, LIU Yu. Experimental study of grinding system optimization for a tungsten polymetallic ore[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 79-84. DOI: 10.13264/j.cnki.ysjskx.2013.05.012
    [10]WAN Lin-sheng, ZHOU Jie-ying. On Size Characteristics Controlling of High-purity Ta2O5 Powder[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 15-18.
  • Cited by

    Periodical cited type(26)

    1. 郦超,周浩,龚丽,曾剑武. 纳米陶瓷球在普朗铜矿立式球磨机中的应用研究. 矿产保护与利用. 2025(01): 23-27 .
    2. 冯永艳. 尖山铁矿三段磨矿纳米陶瓷球的试验研究. 矿业工程. 2025(02): 58-61+68 .
    3. 李哲阳,许辉,谢峰,李龙龙,张小普,姚鑫,吴彩斌. 纳米复合瓷球作磁铁矿细磨介质磨矿特征研究. 黄金科学技术. 2024(04): 694-703 .
    4. 黄雯,刘曙,李鹏飞,王万平,黄轲,李超前. 纳米陶瓷球在程潮选厂二段磨矿中的应用试验. 金属矿山. 2024(10): 132-138 .
    5. 崔朝泽,王岩. 磨矿产品粒度优化方法研究进展. 黄金. 2023(02): 46-50 .
    6. 杨俊彦,孙浩杰,谷建国,张圣东,游世辉. “双碳”目标下球磨机节能降耗技术研究进展. 矿产保护与利用. 2023(01): 169-178 .
    7. 徐今冬,余超,陈晓锋,吴彩斌,张忠祥. 不同磨矿介质对细粒磁铁矿磨矿效果的影响. 有色金属科学与工程. 2023(04): 561-568 . 本站查看
    8. 蒋丰祥,胡城,陈郅隆,童佳琪,沈远海,吴彩斌,桂志海. 纳米陶瓷球在铁粗精矿再磨中的应用试验. 现代矿业. 2023(09): 230-232+237 .
    9. 余浔. 新型细磨介质纳米瓷球技术的研究进展及应用. 有色金属工程. 2023(11): 76-81 .
    10. 吴彤,杨毓隆,马兆利. 陶瓷生产智能化在球磨动力节能降耗方面的应用探索. 陶瓷. 2022(05): 38-41+63 .
    11. 李沛,邓中诚,池慧强,赵善忠,曹钊. 细磨多粒级动力学试验与模拟. 中国粉体技术. 2022(04): 25-35 .
    12. 袁程方,徐涛,吴江岳恩,邵翌博,熊源,吴彩斌. 纳米复合瓷球在钨矿石细磨中磨矿特性研究. 有色金属(选矿部分). 2022(04): 86-91 .
    13. 黎莹,赵俊红,鲁忠臣,曾庆,杨小平,龚卓,周钰. 金属球磨与陶瓷球磨法三七超微粉碎效果分析. 现代养生. 2022(23): 2044-2047 .
    14. 王小玉,李志朝,袁程方,余超,程俊,吴彩斌,刘军. 磁铁矿二段磨陶瓷球磨矿特性研究. 现代矿业. 2022(11): 89-94 .
    15. 吴彩斌. 无钢球磨矿能耗基础及其工艺发展趋势. 中国钨业. 2022(05): 1-6 .
    16. 章恒兴,郑萍,凌佩红,范亚强,张忠祥,吴彩斌. 纳米陶瓷球的耐磨性能研究. 中国钨业. 2022(05): 13-18 .
    17. 袁程方,赖俊全,余超,黄伟生,谢加文,吴彩斌. 球磨机中钨矿石瓷球和钢球磨矿动力学对比研究. 中国钨业. 2022(05): 32-37 .
    18. 廖宁宁,童佳琪,段安安,徐涛,龙冰,吴彩斌. 磨矿介质对钨矿石细磨行为影响研究. 中国钨业. 2022(05): 26-31+43 .
    19. 方鑫,徐今冬,童佳琪,何斌全,李军,李振兴,吴彩斌. 瓷球磨矿在湖南柿竹园公司中的工业应用. 中国钨业. 2022(05): 44-49 .
    20. 钟久祥,曾冲,赖俊全,段安安,李爱民,黄景华,吴彩斌. 瓷球磨矿在行洛坑钨矿中的工业应用. 中国钨业. 2022(05): 50-55 .
    21. 曾冲,赖俊全,钟久祥,段安安,李爱民,黄景华,吴彩斌. 从钨尾矿回收长石的瓷球磨矿工艺设计. 中国钨业. 2022(05): 78-84 .
    22. 陈郅隆,杨昌龙,袁程方,李雨晴,董福章,陈宁青,吴彩斌. 瓷球在金属矿山中再磨作业的工业应用. 中国钨业. 2022(05): 56-62 .
    23. 童佳琪,廖紫鑫,朱玉华,吴季,袁程方,吴彩斌. 艾砂磨机在锂云母浮选分离的应用. 有色金属科学与工程. 2021(02): 66-71 . 本站查看
    24. 赖俊全,向子祥,李雨晴,吴彩斌. 纳米陶瓷球作细磨介质下的磨矿动力学. 有色金属科学与工程. 2021(03): 100-105 . 本站查看
    25. 柳晓峰,康建雄,袁程方,吴彩斌. 钢球级配对百花岭选厂钼矿石磨矿产品粒度特性的影响研究. 现代矿业. 2021(10): 120-123 .
    26. 刘小平. 高铝研磨瓷球在有色金属矿山应用的可行性研究. 现代矿业. 2021(12): 267-268 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (99) PDF downloads (1) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return