Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
Citation: ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012

Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy

More Information
  • Received Date: April 24, 2022
  • Revised Date: September 08, 2022
  • Available Online: August 23, 2023
  • SnBi36Ag0.5Sbx (x=0.3, 0.7, 1.0, 1.5 and 2.0) solder alloy was prepared by melting pure Sn, Bi, Ag, Sb at 450 ℃ for 6 h and then casting at 320 ℃ according to the mass ratio. The microstructure, phase composition, melting point, wettability, and mechanical properties of the alloy were characterized to study the effect of Sb content on the properties of the alloy. The results showed that the alloy was composed of reticulated Bi phase, matrix phase of Sn, granular and short rod-shaped Bi-rich phase, and Ag3Sn compound. In a certain range, most Sb elements solutionized in the matrix phase of Sn rather than as the SnSb compound liberation. The liquidus temperature and melting range of the alloy were increased by the addition of Sb. With increasing Sb content, the wettability decreased due to the worse wetting time and the wetting force. When the Sb content was 2%, the maximum tensile strength was 97.09 MPa. The addition of a small amount of Sb can significantly affect the properties of the Bi alloy solder in the Sn-Bi system.
  • [1]
    CAI S S, LUO X B, PENG J B, et al. Deformation mechanism of various Sn-xBi alloys under tensile tests[J]. Advanced Composites and Hybrid Materials, 2021, 4(20): 379-391.
    [2]
    白海龙, 徐凤仙, 沙文吉, 等. 三元系Sn-Bi-Ag焊料合金相结构, 组织与性能研究[J]. 稀有金属, 2019, 43(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202305006.htm
    [3]
    WEI Y H, ZHAO X C, LIU Z C, et al. Impact of precipitated phases on the microstructure and mechanical properties of eutectic Sn58Bi alloy[J]. Journal of Alloys and Compounds, 2022, 903: 163882. doi: 10.1016/j.jallcom.2022.163882
    [4]
    徐衡, 罗登俊, 颜炎洪, 等. 微量元素添加对多元Sn-Bi系焊料合金组织与性能的影响[J]. 微纳电子技术, 2021, 58(2): 124-130. doi: 10.13250/j.cnki.wndz.2021.02.005
    [5]
    梁东成, 陈东东, 白海龙, 等. 第二相粒子改善Sn-Bi无铅焊料性能的研究现状[J]. 昆明理工大学学报(自然科学版), 2021, 46(3): 27-38. doi: 10.16112/j.cnki.53-1223/n.2021.03.322
    [6]
    朱文嘉, 徐凤仙, 唐丽, 等. In含量对SnBi36Ag0.5无铅焊料合金性能的影响[J]. 材料科学与工艺, 2022, 30(1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG202201010.htm
    [7]
    李威, 李萌蘖, 卜恒勇. Sn-Bi-In合金焊料及相图计算基础[J]. 稀有金属, 2020, 44(2): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202002012.htm
    [8]
    王小京, 刘彬, 周慧玲, 等. P对Sn-Bi合金组织与性能的影响[J]. 材料工程, 2016, 44(7): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201607020.htm
    [9]
    CHEN S, ZHANG L L, LIU J, et al. A reliability study of nanoparticles reinforced composite Lead-Free solder [J]. Materials Transactions, 2010, 51(10): 1720-1726. doi: 10.2320/matertrans.MJ201002
    [10]
    白海龙, 顾鑫, 赵玲彦, 等. Sb2SnO5纳米颗粒对Sn30Bi0.3Ag合金拉伸与熔化特性的影响[J]. 电子元件与材料, 2021, 40(8): 784-787, 794. https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL202108009.htm
    [11]
    WANG F J, ZHOU L L, WANG X J, et al. Microstructural evolution and joint strength of Sn-58Bi/Cu joints through minor Zn alloying substrate during isothermal aging [J]. Journal of Alloys and Compounds, 2016, 688: 639-648. doi: 10.1016/j.jallcom.2016.07.084
    [12]
    顾鑫, 白海龙, 朱堂葵, 等. 微量元素Ce对Sn20Bi0.7Cu1.0Ag/Cu界面层异常生长的影响[J]. 稀有金属, 2022, 46(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202202005.htm
    [13]
    严继康, 陈东东, 甘有为, 等. P元素对Sn-0.7Cu焊料合金性能的影响[J]. 材料科学与工艺, 2019, 27(5): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG201905007.htm
    [14]
    SHALABY R M. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi-Sn based lead-free solder alloys[J]. Materials Science & Engineering A, 2013, 560: 86-95.
    [15]
    滕媛, 徐凤仙, 严继康, 等. Ge对Sn-Bi-Ag焊料合金性能的影响[J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG201902005.htm
    [16]
    杨添淇, 赵修臣, 程荆卫, 等. Cu和Sb元素添加对Sn-Bi共晶合金性能的影响[J]. 稀有金属材料与工程, 2021, 50(2): 621-626. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202102035.htm
    [17]
    PAIXÃO J L, GOMES L F, REYES R V, et al. Microstructure characterization and tensile properties of directionally solidified Sn-52wt% Bi-1wt% Sb and Sn-52wt% Bi-2wt% Sb alloys[J]. Materials Characterization, 2020, 166: 110445.
    [18]
    WANG K P, WANG F J, HUANG Y, et al. Comprehensive properties of a novel quaternary Sn-Bi-Sb-Ag solder: Wettability, interfacial structure and mechanical properties[J]. Metals-Open Access Metallurgy Journal, 2019, 9(7): 791.
    [19]
    ZHANG C, LIU S D, QIAN G T, et al. Effect of Sb content on properties of Sn-Bi solders[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 184-191.
    [20]
    刘若絮, 毛西秦, 欧梅桂, 等. 冷拉拔变形对纯铜组织及性能的影响[J]. 有色金属科学与工程, 2022, 13(2): 67-75. doi: 10.13264/j.cnki.ysjskx.2022.02.009
    [21]
    HE H J, LIU X X, WANG Z G, et al. Microstructural evolution of the Sn-51Bi-0.9Sb-1.0Ag/Cu soldering interface during isothermal aging[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 15003-15010.
    [22]
    朱文嘉, 徐凤仙, 张欣, 等. 铈含量对SnBi36Ag0.5无铅焊料合金性能的影响[J]. 中国稀土学报, 2022, 40(2): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202202009.htm
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MAO Pengyan, ZHAO Hui, LI Hongda. Effect of Al content on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 867-876. DOI: 10.13264/j.cnki.ysjskx.2024.06.010
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [5]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [6]CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011
    [7]LUO Haiyun, KUANG Quanbo, WANG Richu. Microstructure and mechanical properties of spray deposited Al-Mg-Li Alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 66-71. DOI: 10.13264/j.cnki.ysjskx.2019.04.011
    [8]LEI Xue, WANG Richu, PENG Chaoqun, FENG Yan, SUN Yuehua. Effect of Nd on the microstructure, mechanical properties, and corrosion of Mg-11 Li-3Al-2Zn-0.2Zr alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 46-53. DOI: 10.13264/j.cnki.ysjskx.2019.03.008
    [9]QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007
    [10]HUANG Lihua, ZHANG Tao, ZHANG Xiaobo. Effects of heat treatment and extrusion on the microstructures and mechanical properties of WE53 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 67-70. DOI: 10.13264/j.cnki.ysjskx.2014.06.011

Catalog

    Article Metrics

    Article views (110) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return