Citation: | CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011 |
[1] |
HIRSCH J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. doi: 10.1016/S1003-6326(14)63305-7
|
[2] |
孙德勤, 陈慧君, 文青草, 等. 耐热铝合金的发展与应用[J]. 有色金属科学与工程, 2018, 9(3): 65-69. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201803011
|
[3] |
王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201802009
|
[4] |
MCCULLOUGH R R, JORDON J B, ALLISON P G, et al. Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy[J]. International Journal of Fatigue, 2019, 119: 52-61. doi: 10.1016/j.ijfatigue.2018.09.023
|
[5] |
黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201903003
|
[6] |
亓海全, 秦翔智, 孙延焕, 等. 搅拌摩擦修复6061-T4铝合金裂纹的组织和性能[J]. 有色金属科学与工程, 2019, 10(1): 72-76. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201901012
|
[7] |
LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology, 1999, 15(3): 193-197. http://search.cnki.net/down/default.aspx?filename=CLKJ199903000&dbcode=CJFD&year=1999&dflag=pdfdown
|
[8] |
KATTOURA M, MANNAVA S R, QIAN D, et al. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718plus alloy[J]. Materials Science and Engineering A, 2018, 711: 364-377. doi: 10.1016/j.msea.2017.11.043
|
[9] |
李乐, 路媛媛, 唐峰, 等. 表面纳米化对镍基高温合金焊接液化裂纹的影响[J]. 焊接学报, 2019, 40(1): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201901030.htm
|
[10] |
XU G M, WANG C M, LI Q L, et al. Effects of ultrasonic rolling on surface performance of 7B85-T6 alloy[J]. Materials and Manufacturing Processes, 2020, 35(3): 250-257. doi: 10.1080/10426914.2020.1718701
|
[11] |
AMINI S, KARIMAN S A, TEIMOURI R. The effects of ultrasonic peening on chemical corrosion behavior of aluminum 7075[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 1091-1102. doi: 10.1007/s00170-016-9795-6
|
[12] |
TSAI M T, HUANG J C, TSAI W Y, et al. Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys[J]. Intermetallics, 2018, 93: 113-121. doi: 10.1016/j.intermet.2017.11.018
|
[13] |
武永丽, 熊毅, 陈正阁, 等. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC202105015.htm
|
[14] |
SHI X, FENG X, TENG J, et al. Effect of laser shock peening on microstructure and fatigue properties of thin-wall welded Ti-6A1-4V alloy[J]. Vacuum, 2021, 184: 109986. doi: 10.1016/j.vacuum.2020.109986
|
[15] |
王春明, 杨牧南, 黄建辉, 等. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265. doi: 10.11896/cldb.18040187
|
[16] |
YE H, SUN X, LIU Y, et al. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J]. Surface and Coatings Technology, 2019, 372: 288-298. doi: 10.1016/j.surfcoat.2019.05.035
|
[17] |
吴嘉楠, 张柯, 刘平, 等. 纯铜梯度纳米化表面硬质膜的微观结构演化与力学性能研究[J]. 有色金属材料与工程, 2020, 41(6): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA202006003.htm
|
[18] |
袁俊瑞, 徐佳, 周振宇, 等. 滚压诱导纯铜表面梯度纳米结构磨损行为研究[J]. 机械工程学报, 2017, 53(24): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201724006.htm
|
[19] |
CHEN C, CHEN F, ZHANG H. Surface nanocrystallization of 7A52 aluminum alloy welded joint by aging and ultrasonic impact compound treatment[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2637-2641. doi: 10.1016/S1875-5372(18)30201-7
|
[20] |
LI L, KIM M, LEE S, et al. Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 1255-1264. doi: 10.1007/s00170-018-1666-x
|
[21] |
LIU Y, JIN B, LU J. Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment[J]. Materials Science and Engineering A, 2015, 636: 446-451. doi: 10.1016/j.msea.2015.03.068
|
[22] |
CHANG H W, KELLY P M, SHI Y N, et al. Effect of eutectic Si on surface nanocrystallization of Al-Si alloys by surface mechanical attrition treatment[J]. Materials Science and Engineering A, 2011, 530: 304-314. doi: 10.1016/j.msea.2011.09.090
|
[23] |
VAIBHAV P, CHATTOPADHYAY K, SANTHI SRINIVAS N C, et al. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy[J]. International Journal of Fatigue, 2017, 103: 426-435. doi: 10.1016/j.ijfatigue.2017.06.033
|
[24] |
丛家慧, 王磊. 超声喷丸表面强化技术的研究现状与应用进展[J]. 机械工程材料, 2019, 43(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201905001.htm
|
[25] |
YANG B, TAN C, ZHAO Y, et al. Influence of ultrasonic peening on microstructure and surface performance of laser-arc hybrid welded 5A06 aluminum alloy joint[J]. Journal of Materials Research and Technology, 2020, 9(5): 9576-9587. doi: 10.1016/j.jmrt.2020.06.057
|
[26] |
XU X C, LIU D X, ZHANG X H, et al. Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J]. International Journal of Fatigue, 2019, 125: 237-248. doi: 10.1016/j.ijfatigue.2019.04.005
|
[27] |
孙智妍, 张雲飞, 赵秀娟, 等. 电脉冲对GH4169超声滚压表面性能的影响[J]. 兵器材料科学与工程, 2021, 44(3): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202103009.htm
|
[28] |
WANG H, NING C, HUANG Y, et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Optics and Lasers in Engineering, 2017, 90: 179-185. doi: 10.1016/j.optlaseng.2016.10.016
|
[29] |
YANG Y, LIAN X, ZHOU K, et al. Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy[J]. Journal of Alloys and Compounds, 2019, 781: 330-336. doi: 10.1016/j.jallcom.2018.12.118
|
[30] |
KIM S H, PARK S H. Influence of Ce addition and homogenization temperature on microstructural evolution and mechanical properties of extruded Mg-Sn-Al-Zn alloy[J]. Materials Science and Engineering A, 2016, 676: 232-240. doi: 10.1016/j.msea.2016.08.093
|
[31] |
ZHAO C, PAN F, ZHAO S, et al. Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Materials and Design, 2015, 70: 60-67. doi: 10.1016/j.matdes.2014.12.041
|
[32] |
WANG C, XU G, ZENG L, et al. Enhanced corrosion behavior and mechanical properties of Al-Zn-Mg-Cu sheet alloy by ultrasonic surface rolling treatment[J]. Materials Science and Engineering A, 2020, 51: 1967-1971.
|
[33] |
ZHANG Y, JIN S, TRIMBY P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion[J]. Acta Materialia, 2019, 162: 19-32. doi: 10.1016/j.actamat.2018.09.060
|
[34] |
SUN Q, HAN Q, XU R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy[J]. Corrosion Science, 2018, 130: 218-230. doi: 10.1016/j.corsci.2017.11.008
|
[35] |
PANDEY V, SINGH J K, CHATTOPADHYAY K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 723: 826-840. doi: 10.1016/j.jallcom.2017.06.310
|
[36] |
CULLITY B D. Elements of X-ray diffraction[J]. American Journal of Physics, 1957, 25(6): 394-395. doi: 10.1119/1.1934486
|
[37] |
尹文红, 王卫国, 方晓英. 高纯铝中晶界特征分布对变形及退火行为的影响[J]. 热加工工艺, 2017, 46(24): 245-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201724070.htm
|
[38] |
GAO H J, HUANG Y, NIE W D, et al. Mechanism-based strain gradient plasticity - I. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263. doi: 10.1016/S0022-5096(98)00103-3
|
[1] | YAO Li, ZHONG Shengwen. High separation of positive electrode powder from aluminum foil and reduction leaching of positive electrode powder of waste lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 479-486. DOI: 10.13264/j.cnki.ysjskx.2024.04.002 |
[2] | LI Xin, WANG Mingyong, GONG Xuzhong. Simultaneous and efficient leaching of mercury and antimony from mercury tailings[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 9-13,68. DOI: 10.13264/j.cnki.ysjskx.2020.04.002 |
[3] | ZHAO Tianyu, SONG Yunfeng, LI Yongli, ZHAO Zhongwei, HE Lihua, CHEN Xingyu, LIU Xuheng. Recovery of lithium from leaching solution of anode materials in waste lithium-ion batteries by solvent extraction method[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 49-53. DOI: 10.13264/j.cnki.ysjskx.2019.01.008 |
[4] | LIU Jiancong, XIONG Daoling, ZHANG Jianping, CAO Xuewen, ZONG Yi, WANG Luqi, OUYANG Shaobo. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.04.003 |
[5] | ZHANG Shuai, ZENG Huaiyuan, ZHANG Cun, FANG Xihui. Comparisons of leaching a silver ore with cyanide, thiosulfate and thiourea solutions[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 74-78. DOI: 10.13264/j.cnki.ysjskx.2015.01.014 |
[6] | LIU Zhuojun, LIU Xin, LI Linyan, XU Shengming, WANG Xuejun. Atmospheric leaching of Co white alloy[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 24-28, 65. DOI: 10.13264/j.cnki.ysjskx.2015.01.005 |
[7] | LIU Fei-fei, LIU Hui-hui, LI Jun-rong. Soft measurement modeling of WO3 leaching rate based on artificial neural network[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 117-121. DOI: 10.13264/j.cnki.ysjskx.2013.05.004 |
[8] | FANG Xi-hui, CHEN Du-juan. Experimental research on intensification leaching of a certain refractory silver concentrate[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 65-69. |
[9] | XIA Li-bin, LUO Jun, TIAN Lei. The Anode Leaching Study from Waste and Used Ni-MH Battery[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 32-33. |
[10] | DAI Xiao-tong. The factors analysis on heap leaching recovery in Wujia gold mine[J]. Nonferrous Metals Science and Engineering, 2000, 14(4): 8-11. |
1. |
保雪凡,邓志敢,魏昶,樊刚,李兴彬,李旻廷. 碳酸锂热分解工艺研究现状及发展. 有色金属科学与工程. 2023(04): 467-472 .
![]() |