Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011
Citation: CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011

Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy

More Information
  • Received Date: May 23, 2021
  • Published Date: December 30, 2021
  • The 7B85 alloy was treated by ultrasonic rolling treatment (USRT) with different preloading depth (0, 0.1, 0.2, 0.3 and 0.4 mm). The microstructure and mechanical properties of 7B85 alloy treated by ultrasonic rolling were investigated by optical microscope, surface roughness tester, micro Vickers hardness test, tensile test, scanning electron microscope, X-ray diffraction and electron back scattering diffraction. The results show that the surface roughness, microhardness and tensile strength of 7B85 alloy treated by ultrasonic surface rolling reached the optimal value, when the preloading depth was 0.2 mm. The fracture morphology of the 7B85 alloy showed a large number of deep dimples, which were mainly in the form of ductile fracture. Meanwhile, most of the η precipitates in the 7B85 alloy are dissolved into the aluminum matrix after USRT, and the average grain size of the alloy surface is about (25.22 ± 6.46) nm. The improvement of the mechanical properties of the 7B85 alloy after USRT is mainly attributed to the joint action of fine grain strengthening and stress strengthening on the alloy surface.
  • [1]
    HIRSCH J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 1995-2002. doi: 10.1016/S1003-6326(14)63305-7
    [2]
    孙德勤, 陈慧君, 文青草, 等. 耐热铝合金的发展与应用[J]. 有色金属科学与工程, 2018, 9(3): 65-69. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201803011
    [3]
    王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201802009
    [4]
    MCCULLOUGH R R, JORDON J B, ALLISON P G, et al. Fatigue crack nucleation and small crack growth in an extruded 6061 aluminum alloy[J]. International Journal of Fatigue, 2019, 119: 52-61. doi: 10.1016/j.ijfatigue.2018.09.023
    [5]
    黄晶明, 王昭文, 刘增威, 等. 采用SECM分析7075铝合金的局部腐蚀行为[J]. 有色金属科学与工程, 2019, 10(3): 14-20. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201903003
    [6]
    亓海全, 秦翔智, 孙延焕, 等. 搅拌摩擦修复6061-T4铝合金裂纹的组织和性能[J]. 有色金属科学与工程, 2019, 10(1): 72-76. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201901012
    [7]
    LU K, LU J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology, 1999, 15(3): 193-197. http://search.cnki.net/down/default.aspx?filename=CLKJ199903000&dbcode=CJFD&year=1999&dflag=pdfdown
    [8]
    KATTOURA M, MANNAVA S R, QIAN D, et al. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718plus alloy[J]. Materials Science and Engineering A, 2018, 711: 364-377. doi: 10.1016/j.msea.2017.11.043
    [9]
    李乐, 路媛媛, 唐峰, 等. 表面纳米化对镍基高温合金焊接液化裂纹的影响[J]. 焊接学报, 2019, 40(1): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201901030.htm
    [10]
    XU G M, WANG C M, LI Q L, et al. Effects of ultrasonic rolling on surface performance of 7B85-T6 alloy[J]. Materials and Manufacturing Processes, 2020, 35(3): 250-257. doi: 10.1080/10426914.2020.1718701
    [11]
    AMINI S, KARIMAN S A, TEIMOURI R. The effects of ultrasonic peening on chemical corrosion behavior of aluminum 7075[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 1091-1102. doi: 10.1007/s00170-016-9795-6
    [12]
    TSAI M T, HUANG J C, TSAI W Y, et al. Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys[J]. Intermetallics, 2018, 93: 113-121. doi: 10.1016/j.intermet.2017.11.018
    [13]
    武永丽, 熊毅, 陈正阁, 等. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC202105015.htm
    [14]
    SHI X, FENG X, TENG J, et al. Effect of laser shock peening on microstructure and fatigue properties of thin-wall welded Ti-6A1-4V alloy[J]. Vacuum, 2021, 184: 109986. doi: 10.1016/j.vacuum.2020.109986
    [15]
    王春明, 杨牧南, 黄建辉, 等. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265. doi: 10.11896/cldb.18040187
    [16]
    YE H, SUN X, LIU Y, et al. Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy[J]. Surface and Coatings Technology, 2019, 372: 288-298. doi: 10.1016/j.surfcoat.2019.05.035
    [17]
    吴嘉楠, 张柯, 刘平, 等. 纯铜梯度纳米化表面硬质膜的微观结构演化与力学性能研究[J]. 有色金属材料与工程, 2020, 41(6): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA202006003.htm
    [18]
    袁俊瑞, 徐佳, 周振宇, 等. 滚压诱导纯铜表面梯度纳米结构磨损行为研究[J]. 机械工程学报, 2017, 53(24): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201724006.htm
    [19]
    CHEN C, CHEN F, ZHANG H. Surface nanocrystallization of 7A52 aluminum alloy welded joint by aging and ultrasonic impact compound treatment[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2637-2641. doi: 10.1016/S1875-5372(18)30201-7
    [20]
    LI L, KIM M, LEE S, et al. Study on surface modification of aluminum 6061 by multiple ultrasonic impact treatments[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 1255-1264. doi: 10.1007/s00170-018-1666-x
    [21]
    LIU Y, JIN B, LU J. Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment[J]. Materials Science and Engineering A, 2015, 636: 446-451. doi: 10.1016/j.msea.2015.03.068
    [22]
    CHANG H W, KELLY P M, SHI Y N, et al. Effect of eutectic Si on surface nanocrystallization of Al-Si alloys by surface mechanical attrition treatment[J]. Materials Science and Engineering A, 2011, 530: 304-314. doi: 10.1016/j.msea.2011.09.090
    [23]
    VAIBHAV P, CHATTOPADHYAY K, SANTHI SRINIVAS N C, et al. Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy[J]. International Journal of Fatigue, 2017, 103: 426-435. doi: 10.1016/j.ijfatigue.2017.06.033
    [24]
    丛家慧, 王磊. 超声喷丸表面强化技术的研究现状与应用进展[J]. 机械工程材料, 2019, 43(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201905001.htm
    [25]
    YANG B, TAN C, ZHAO Y, et al. Influence of ultrasonic peening on microstructure and surface performance of laser-arc hybrid welded 5A06 aluminum alloy joint[J]. Journal of Materials Research and Technology, 2020, 9(5): 9576-9587. doi: 10.1016/j.jmrt.2020.06.057
    [26]
    XU X C, LIU D X, ZHANG X H, et al. Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy[J]. International Journal of Fatigue, 2019, 125: 237-248. doi: 10.1016/j.ijfatigue.2019.04.005
    [27]
    孙智妍, 张雲飞, 赵秀娟, 等. 电脉冲对GH4169超声滚压表面性能的影响[J]. 兵器材料科学与工程, 2021, 44(3): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202103009.htm
    [28]
    WANG H, NING C, HUANG Y, et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Optics and Lasers in Engineering, 2017, 90: 179-185. doi: 10.1016/j.optlaseng.2016.10.016
    [29]
    YANG Y, LIAN X, ZHOU K, et al. Effects of laser shock peening on microstructures and properties of 2195 Al-Li alloy[J]. Journal of Alloys and Compounds, 2019, 781: 330-336. doi: 10.1016/j.jallcom.2018.12.118
    [30]
    KIM S H, PARK S H. Influence of Ce addition and homogenization temperature on microstructural evolution and mechanical properties of extruded Mg-Sn-Al-Zn alloy[J]. Materials Science and Engineering A, 2016, 676: 232-240. doi: 10.1016/j.msea.2016.08.093
    [31]
    ZHAO C, PAN F, ZHAO S, et al. Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications[J]. Materials and Design, 2015, 70: 60-67. doi: 10.1016/j.matdes.2014.12.041
    [32]
    WANG C, XU G, ZENG L, et al. Enhanced corrosion behavior and mechanical properties of Al-Zn-Mg-Cu sheet alloy by ultrasonic surface rolling treatment[J]. Materials Science and Engineering A, 2020, 51: 1967-1971.
    [33]
    ZHANG Y, JIN S, TRIMBY P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion[J]. Acta Materialia, 2019, 162: 19-32. doi: 10.1016/j.actamat.2018.09.060
    [34]
    SUN Q, HAN Q, XU R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy[J]. Corrosion Science, 2018, 130: 218-230. doi: 10.1016/j.corsci.2017.11.008
    [35]
    PANDEY V, SINGH J K, CHATTOPADHYAY K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 723: 826-840. doi: 10.1016/j.jallcom.2017.06.310
    [36]
    CULLITY B D. Elements of X-ray diffraction[J]. American Journal of Physics, 1957, 25(6): 394-395. doi: 10.1119/1.1934486
    [37]
    尹文红, 王卫国, 方晓英. 高纯铝中晶界特征分布对变形及退火行为的影响[J]. 热加工工艺, 2017, 46(24): 245-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201724070.htm
    [38]
    GAO H J, HUANG Y, NIE W D, et al. Mechanism-based strain gradient plasticity - I. Theory[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263. doi: 10.1016/S0022-5096(98)00103-3
  • Related Articles

    [1]YAO Li, ZHONG Shengwen. High separation of positive electrode powder from aluminum foil and reduction leaching of positive electrode powder of waste lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 479-486. DOI: 10.13264/j.cnki.ysjskx.2024.04.002
    [2]LI Xin, WANG Mingyong, GONG Xuzhong. Simultaneous and efficient leaching of mercury and antimony from mercury tailings[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 9-13,68. DOI: 10.13264/j.cnki.ysjskx.2020.04.002
    [3]ZHAO Tianyu, SONG Yunfeng, LI Yongli, ZHAO Zhongwei, HE Lihua, CHEN Xingyu, LIU Xuheng. Recovery of lithium from leaching solution of anode materials in waste lithium-ion batteries by solvent extraction method[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 49-53. DOI: 10.13264/j.cnki.ysjskx.2019.01.008
    [4]LIU Jiancong, XIONG Daoling, ZHANG Jianping, CAO Xuewen, ZONG Yi, WANG Luqi, OUYANG Shaobo. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. DOI: 10.13264/j.cnki.ysjskx.2018.04.003
    [5]ZHANG Shuai, ZENG Huaiyuan, ZHANG Cun, FANG Xihui. Comparisons of leaching a silver ore with cyanide, thiosulfate and thiourea solutions[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 74-78. DOI: 10.13264/j.cnki.ysjskx.2015.01.014
    [6]LIU Zhuojun, LIU Xin, LI Linyan, XU Shengming, WANG Xuejun. Atmospheric leaching of Co white alloy[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 24-28, 65. DOI: 10.13264/j.cnki.ysjskx.2015.01.005
    [7]LIU Fei-fei, LIU Hui-hui, LI Jun-rong. Soft measurement modeling of WO3 leaching rate based on artificial neural network[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 117-121. DOI: 10.13264/j.cnki.ysjskx.2013.05.004
    [8]FANG Xi-hui, CHEN Du-juan. Experimental research on intensification leaching of a certain refractory silver concentrate[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 65-69.
    [9]XIA Li-bin, LUO Jun, TIAN Lei. The Anode Leaching Study from Waste and Used Ni-MH Battery[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 32-33.
    [10]DAI Xiao-tong. The factors analysis on heap leaching recovery in Wujia gold mine[J]. Nonferrous Metals Science and Engineering, 2000, 14(4): 8-11.
  • Cited by

    Periodical cited type(1)

    1. 保雪凡,邓志敢,魏昶,樊刚,李兴彬,李旻廷. 碳酸锂热分解工艺研究现状及发展. 有色金属科学与工程. 2023(04): 467-472 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (108) PDF downloads (6) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return