Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LEI Xue, WANG Richu, PENG Chaoqun, FENG Yan, SUN Yuehua. Effect of Nd on the microstructure, mechanical properties, and corrosion of Mg-11 Li-3Al-2Zn-0.2Zr alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 46-53. DOI: 10.13264/j.cnki.ysjskx.2019.03.008
Citation: LEI Xue, WANG Richu, PENG Chaoqun, FENG Yan, SUN Yuehua. Effect of Nd on the microstructure, mechanical properties, and corrosion of Mg-11 Li-3Al-2Zn-0.2Zr alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 46-53. DOI: 10.13264/j.cnki.ysjskx.2019.03.008

Effect of Nd on the microstructure, mechanical properties, and corrosion of Mg-11 Li-3Al-2Zn-0.2Zr alloy

More Information
  • Received Date: March 05, 2019
  • Published Date: June 29, 2019
  • The effect of Nd on the microstructure, mechanical properties and corrosion of homogenized Mg-11Li-3Al-2Zn-0.2Zr alloy was studied. The cast ingots were fabricated in a vacuum induction furnace. The as-cast Mg-11Li-3Al-2Zn-xNd-0.2Zr (x=0, 0.5, 1.0, 1.5) alloy was homogenized at 280 ℃ for 24 h. XRD and SEM were used to analyze the microstructure of the alloy, and the tensile test and fracture analysis were carried out. The corrosion of alloy in 3.5% NaCl solution was studied by electrochemical method and hydrogen evolution test. The results show that Mg-11Li-3Al-2Zn-0.2Zr alloy mainly consists of β-Li, AlLi, and MgLi2Al phases. The addition of Nd results in the formation of NdAl3 phase. With the increase of Nd content, the strength and plasticity of the alloy increase first and then decrease. Mg-11Li-3Al-2Zn-1Nd-0.2Zr alloy shows the best mechanical properties, whose tensile strength and elongation increase by 28.8 % and 51.3 % respectively compared with Mg-11Li-3Al-2Zn-0.2Zr alloy. The addition of Nd improves the corrosion resistance of the alloy. Mg-11Li-3Al-2Zn-0.5Nd-0.2Zr alloy, with a more positive corrosion potential and a lower hydrogen evolution rate, shows the best corrosion resistance.
  • [1]
    陈斌, 冯林平, 钟皓, 等.变形Mg-Li-Al-Zn合金的组织与性能[J].北京航空航天大学学报, 2004, 30(10): 976-979. doi: 10.3969/j.issn.1001-5965.2004.10.014
    [2]
    高丽丽, 张春红, 黄晓梅, 等. Mg-11Li-3Al-0.5RE合金在酸性NaCl溶液中腐蚀特性研究[J].表面技术, 2008, 37(2): 4-7. doi: 10.3969/j.issn.1001-3660.2008.02.002
    [3]
    吴利斌, 孟祥瑞, 崔崇亮, 等.超轻变形Mg-Li-Al-Zn合金的显微组织和性能[J].铸造技术, 2009, 30(10): 1256-1259. http://d.old.wanfangdata.com.cn/Periodical/zzjs200910005
    [4]
    吕艳卓, 徐岩, 王学新, 等. Mg-8Li, Mg-8Li-0.5Ce和Mg-8Li-1Ce合金在0.7mol·L~(-1)NaCl溶液中电化学性能的研究[J].化学学报, 2011, 69(19): 2248-2252. http://d.old.wanfangdata.com.cn/Periodical/hxxb201119009
    [5]
    乐启炽, 崔建忠. Zr对Mg-Li合金力学性能的影响[J].材料导报, 1997(1): 26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700937336
    [6]
    马洪波, 赵平. Y和混合稀土对Mg-Li-Al合金力学性能的影响[J].热加工工艺, 2008, 37(2): 34-37. doi: 10.3969/j.issn.1001-3814.2008.02.010
    [7]
    刘滨, 张密林. Ce对Mg-Li-Al合金组织及力学性能的影响[J].特种铸造及有色合金, 2007, 27(5): 329-331. doi: 10.3321/j.issn:1001-2249.2007.05.001
    [8]
    卫爱丽, 刘兴海, 张焜, 等.复合添加Si、Nd元素对Mg-11Li-3Al合金组织与力学性能的影响[J].稀有金属材料与工程, 2016, 45(4): 990-996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201604032
    [9]
    胡赓祥, 蔡珣, 戎咏华.材料科学基础[M].上海:上海交通大学出版社, 2010.
    [10]
    冀国栋, 巫瑞智, 牛中毅, 等. Nd含量对Mg-11Li-1Al合金组织的影响[J].特种铸造及有色合金, 2009, 29(5): 462-464. doi: 10.3870/tzzz.2009.05.026
    [11]
    刘旭贺, 解海涛, 刘洋, 等.铸态及挤压态Mg-11Li-3Al-xZr合金的组织及性能[J].特种铸造及有色合金, 2017, 37(8): 816-820. http://d.old.wanfangdata.com.cn/Periodical/tzzzjyshj201708002
    [12]
    崔崇亮, 刘旭贺, 吴立斌, 等.挤压变形态Mg-5Li-3Al-2Zn-xY合金的显微组织和力学性能[J].稀有金属材料与工程, 2013, 42(1): 89-93. doi: 10.3969/j.issn.1002-185X.2013.01.018
    [13]
    钟倩. Li、Zn和Al对镁合金腐蚀性能的影响[D].哈尔滨: 哈尔滨工程大学, 2016.
    [14]
    王日初, 王乃光, 彭超群, 等. Mn对海水激活电池用AP65镁合金阳极材料电化学性能的影响[J].有色金属科学与工程, 2013, 4(3): 1-8. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201303001
    [15]
    杨少华, 田亚斌, 叶昌美, 等. 5083铝镁合金在不同浓度NaCl溶液中的腐蚀研究[J].有色金属科学与工程, 2018, 9(2): 1-5. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201709015
    [16]
    张俊昌, 冯艳, 王乃光, 等.挤压比对海水激活电池用AP65镁合金阳极材料放电性能的影响[J].有色金属科学与工程, 2017, 8(3): 54-63. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017030009
    [17]
    GU M, WEI G, ZHAO J, et al. Influence of yttrium addition on the corrosion behaviour of as-cast Mg-8Li-3Al-2Zn alloy[J]. Metal Science Journal, 2016, 33(7): 864-869. http://cn.bing.com/academic/profile?id=71dfb05c15958c27bcb742b37727ecb3&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    王涛.镁锂稀土合金的制备及性能研究[D].哈尔滨: 哈尔滨工程大学, 2008.
    [19]
    刘滨.超轻Mg-Li-Al-RE系合金组织和性能研究[D].哈尔滨: 哈尔滨工程大学, 2008.
    [20]
    MANIVANNAN S, DINESH P, MAHEMAA R, et al. Corrosion behavior of as-cast Mg-8Li-3Al+xCe ahoy in 3.5wt% NaCl solution[J]. International Journal of Mineral Metallurgy and Materials, 2016, 23(10):1196-1203. doi: 10.1007/s12613-016-1339-4
  • Related Articles

    [1]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [2]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [3]ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]RAO Yun-zhang, XU Ling-bin. Copper mine numerical simulation study of the impact of reverse fault on the surrounding rock stability[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 55-60. DOI: 10.13264/j.cnki.ysjskx.2012.06.011
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]WU Hui, CAI Si-jing, WANG Zhang, CHEN Wu-jiu. Numerical simulation of ventilation network and its validation in Hemushan iron mine[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 60-65. DOI: 10.13264/j.cnki.ysjskx.2012.03.013
    [8]DENG Tong-fa, WU Zhou-ming, LUO Si-hai, GUI Yong. Numerical simulation for the effect of saturated soil with changing permeability coefficient under dynamic compaction[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 57-62. DOI: 10.13264/j.cnki.ysjskx.2012.01.002
    [9]SHI Fei, HE Jian. Numerical Simulation of Surface Movement in Insufficient Mining Region[J]. Nonferrous Metals Science and Engineering, 2007, 21(4): 16-17, 30.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.

Catalog

    Article Metrics

    Article views (83) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return