Citation: | LIN Yuan, YANG Qi, HUANG Tuo, YANG Xiaolong, LIU Wei, LI Meng. Grain growth behavior in the β- phase of Ti9148 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 93-97. DOI: 10.13264/j.cnki.ysjskx.2022.02.013 |
[1] |
WAN W F, LIU H Q, JIANG Y, et al. Microstructure characterization and property tailoring of a biomedical Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Materials Science and Engineering A, 2015, 637(18): 130-138.
|
[2] |
XIAOY, HU T, YANG Q, et al. Stress-induced a" phase in a beta Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Materials Characterization, 2018, 140: 247-258. doi: 10.1016/j.matchar.2018.04.019
|
[3] |
WANG K. The use of titanium for medical applications in the USA[J]. Materials Science & Engineering A, 1996, 213(1/2): 134-137.
|
[4] |
麻西群, 于振涛, 牛金龙, 等. 新型生物医用钛合金的设计及应用进展[J]. 有色金属材料与工程, 2018, 39(6): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201806006.htm
|
[5] |
朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012, 41(11): 2058-2063. doi: 10.3969/j.issn.1002-185X.2012.11.039
|
[6] |
LEYENSC, PETERS M. Titanium and Titanium Alloys[C]//Titanium and Titanium Alloys-Fundamentals and Applications, 2003.
|
[7] |
CHEN Y N, WEI J F, ZHAO Y Q, et al. Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1018-1022. doi: 10.1016/S1003-6326(11)60815-7
|
[8] |
SADEGHPOUR S, JAVAHERI V, ABBASI S M, et al. The effect of phase stability on the grain growth behavior of beta titanium alloys[J]. Physica B: Physics of Condensed Matter, 2020, 593: 412315. doi: 10.1016/j.physb.2020.412315
|
[9] |
JIANG Y Q, LIN Y C, WANG G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β-region[J]. Journal of Alloys and Compounds, 2021, 870(8): 159534.
|
[10] |
程晨, 雷旻, 万明攀, 等. BT25钛合金高温变形行为[J]. 有色金属科学与工程, 2017, 8(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201706008.htm
|
[11] |
万明攀, 赵永庆, 曾卫东, 等. Ti-1300合金的晶粒长大行为[J]. 稀有金属材料与工程, 2015, 44(4) : 908-911. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201504027.htm
|
[12] |
马英杰, 刘建荣, 雷家峰, 等. 钛合金β-晶粒生长规律及晶粒尺寸对损伤容限性能的影响[J]. 稀有金属材料与工程, 2009, 38(6): 976-981. doi: 10.3321/j.issn:1002-185X.2009.06.009
|
[13] |
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.
|
[14] |
WANG T, GUO H, TAN L, et al. Beta grain growth behavior of TG6 and Ti17 titanium alloys[J]. Materials Science and Engineering A, 2011, 528(21): 6375–6380. doi: 10.1016/j.msea.2011.05.042
|
[15] |
朱绍祥, 刘建荣, 王青江, 等. 高温钛合金Ti-60与IMI834的β-晶粒长大规律[J]. 金属热处理, 2007, 32(11): 11-14. doi: 10.3969/j.issn.0254-6051.2007.11.003
|
[16] |
邱建科, 马英杰, 吉海滨, 等. Mo含量对钛合金晶粒长大行为及力学性能的影响[C]//全国钛及钛合金学术交流会. 中国有色金属学会, 2013.
|
[17] |
毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994.
|
[18] |
秦春, 蒋亮, 李涌泉. Ti-24Al-15Nb-1.5Mo合金的β-晶粒长大行为研究[J]. 热加工工艺, 2020, 49(22): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202022042.htm
|
[19] |
叶青, 冯兴宇, 赵鸿金. 固溶时间对Cu-Ni-Si-Mg合金组织性能的影响[J]. 有色金属科学与工程, 2017, 8(3): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201703013.htm
|
[20] |
SADEGHPOUR S, JAVAHERI V, ABBASI S M, et al. The effect of phase stability on the grain growth behavior of beta titanium alloys[J]. Physica B: Condensed Matter, 2020, 593: 412315. doi: 10.1016/j.physb.2020.412315
|
[21] |
OUYANG D L, DU H M, CUI X, et al. Grain growth behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy during isothermal β-heat treatments[J]. Rare Metals, 2019, 38(3): 233-237. doi: 10.1007/s12598-016-0853-x
|
[22] |
GIL F J, PLANELL J A. Behavior of normal grain growth kinetics in single phase titanium and titanium alloys[J]. Materials Science & Engineering A, 2000, 283(1/2): 17-24.
|
[23] |
刘建军, 王克鲁, 鲁世强, 等. Ti-25Nb合金的热变形行为及本构关系模型[J]. 塑性工程学报, 2020, 27(6): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202006027.htm
|
[24] |
周伟, 辛社伟, 葛鹏, 等. TB8钛合金晶粒长大行为的研究[J]. 钛工业进展, 2014, 31(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201406009.htm
|
[1] | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
[2] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[3] | WANG Xiu, LIU Jiaxin, FAN Xinyue, ZHOU Zili, HAN Yang, CAO Zhongqiu, WANG Yan, ZHANG Ke, XIN Shigang. Studies on corrosion resistance of nanocrystalline Cu-Co alloy in H2SO4 solution of different concentrations[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 235-242. DOI: 10.13264/j.cnki.ysjskx.2023.02.010 |
[4] | ZHAO Haibin, GAO Zan, LI Fusong, DONG Panpan, DAI Shiliang, FANG Huawei. Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 41-48. DOI: 10.13264/j.cnki.ysjskx.2022.05.006 |
[5] | CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003 |
[6] | DUAN Bohua, ZHANG Zhao, YANG Donglin, WANG Dezhi. Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composite material[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 59-65. DOI: 10.13264/j.cnki.ysjskx.2019.04.010 |
[7] | ZHANG Junchang, FENG Yan, WANG Naiguang, YANG Ming. Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 54-63. DOI: 10.13264/j.cnki.ysjskx.2017.03.009 |
[8] | WANG Shun-cheng, ZHENG Kai-hong, QI Wen-jun, SHI Lu, NING Chang-wei. Effect of electromagnetic stirring on microstructure and grain refining efficiency of Al-5Ti-1B grain refiner[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 58-62. DOI: 10.13264/j.cnki.ysjskx.2014.01.011 |
[9] | WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009 |
[10] | SHUI Lang, HE Dong-feng, AI Li-xiang, XU An-jun, TIAN Nai-yuan. An analytical method for waste energy recycling in metallurgical production[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 43-48. DOI: 10.13264/j.cnki.ysjskx.2012.01.019 |