Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIN Yuan, YANG Qi, HUANG Tuo, YANG Xiaolong, LIU Wei, LI Meng. Grain growth behavior in the β- phase of Ti9148 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 93-97. DOI: 10.13264/j.cnki.ysjskx.2022.02.013
Citation: LIN Yuan, YANG Qi, HUANG Tuo, YANG Xiaolong, LIU Wei, LI Meng. Grain growth behavior in the β- phase of Ti9148 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 93-97. DOI: 10.13264/j.cnki.ysjskx.2022.02.013

Grain growth behavior in the β- phase of Ti9148 titanium alloy

More Information
  • Received Date: February 27, 2021
  • Revised Date: August 23, 2021
  • Available Online: May 09, 2022
  • Ti9148 alloy is a new biomedical titanium alloy. To reasonably control the grain size of the product in the production process, the β-grain growth behavior of Ti9148 titanium alloy at different solution treatment temperatures and holding times was studied by solution quenching experiments. The results showed that the β-grain size of the alloy increased with increasing heating temperature, and the higher the temperature was, the faster the grain size grew. In the isothermal heating process, the β-grain size first grew rapidly and then slowed down after more than 30 min. The grain growth kinetics showed that when the alloy was heated at 750-900 ℃, the relationship between the β-grain size and holding time approximated a power function, and the grain growth index was approximately 0.213-0.300. The activation energy of grain growth was calculated to be 32.57 kJ/mol.
  • [1]
    WAN W F, LIU H Q, JIANG Y, et al. Microstructure characterization and property tailoring of a biomedical Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Materials Science and Engineering A, 2015, 637(18): 130-138.
    [2]
    XIAOY, HU T, YANG Q, et al. Stress-induced a" phase in a beta Ti-19Nb-1.5Mo-4Zr-8Sn alloy[J]. Materials Characterization, 2018, 140: 247-258. doi: 10.1016/j.matchar.2018.04.019
    [3]
    WANG K. The use of titanium for medical applications in the USA[J]. Materials Science & Engineering A, 1996, 213(1/2): 134-137.
    [4]
    麻西群, 于振涛, 牛金龙, 等. 新型生物医用钛合金的设计及应用进展[J]. 有色金属材料与工程, 2018, 39(6): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201806006.htm
    [5]
    朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012, 41(11): 2058-2063. doi: 10.3969/j.issn.1002-185X.2012.11.039
    [6]
    LEYENSC, PETERS M. Titanium and Titanium Alloys[C]//Titanium and Titanium Alloys-Fundamentals and Applications, 2003.
    [7]
    CHEN Y N, WEI J F, ZHAO Y Q, et al. Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1018-1022. doi: 10.1016/S1003-6326(11)60815-7
    [8]
    SADEGHPOUR S, JAVAHERI V, ABBASI S M, et al. The effect of phase stability on the grain growth behavior of beta titanium alloys[J]. Physica B: Physics of Condensed Matter, 2020, 593: 412315. doi: 10.1016/j.physb.2020.412315
    [9]
    JIANG Y Q, LIN Y C, WANG G Q, et al. Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β-region[J]. Journal of Alloys and Compounds, 2021, 870(8): 159534.
    [10]
    程晨, 雷旻, 万明攀, 等. BT25钛合金高温变形行为[J]. 有色金属科学与工程, 2017, 8(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201706008.htm
    [11]
    万明攀, 赵永庆, 曾卫东, 等. Ti-1300合金的晶粒长大行为[J]. 稀有金属材料与工程, 2015, 44(4) : 908-911. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201504027.htm
    [12]
    马英杰, 刘建荣, 雷家峰, 等. 钛合金β-晶粒生长规律及晶粒尺寸对损伤容限性能的影响[J]. 稀有金属材料与工程, 2009, 38(6): 976-981. doi: 10.3321/j.issn:1002-185X.2009.06.009
    [13]
    胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010.
    [14]
    WANG T, GUO H, TAN L, et al. Beta grain growth behavior of TG6 and Ti17 titanium alloys[J]. Materials Science and Engineering A, 2011, 528(21): 6375–6380. doi: 10.1016/j.msea.2011.05.042
    [15]
    朱绍祥, 刘建荣, 王青江, 等. 高温钛合金Ti-60与IMI834的β-晶粒长大规律[J]. 金属热处理, 2007, 32(11): 11-14. doi: 10.3969/j.issn.0254-6051.2007.11.003
    [16]
    邱建科, 马英杰, 吉海滨, 等. Mo含量对钛合金晶粒长大行为及力学性能的影响[C]//全国钛及钛合金学术交流会. 中国有色金属学会, 2013.
    [17]
    毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994.
    [18]
    秦春, 蒋亮, 李涌泉. Ti-24Al-15Nb-1.5Mo合金的β-晶粒长大行为研究[J]. 热加工工艺, 2020, 49(22): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202022042.htm
    [19]
    叶青, 冯兴宇, 赵鸿金. 固溶时间对Cu-Ni-Si-Mg合金组织性能的影响[J]. 有色金属科学与工程, 2017, 8(3): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201703013.htm
    [20]
    SADEGHPOUR S, JAVAHERI V, ABBASI S M, et al. The effect of phase stability on the grain growth behavior of beta titanium alloys[J]. Physica B: Condensed Matter, 2020, 593: 412315. doi: 10.1016/j.physb.2020.412315
    [21]
    OUYANG D L, DU H M, CUI X, et al. Grain growth behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy during isothermal β-heat treatments[J]. Rare Metals, 2019, 38(3): 233-237. doi: 10.1007/s12598-016-0853-x
    [22]
    GIL F J, PLANELL J A. Behavior of normal grain growth kinetics in single phase titanium and titanium alloys[J]. Materials Science & Engineering A, 2000, 283(1/2): 17-24.
    [23]
    刘建军, 王克鲁, 鲁世强, 等. Ti-25Nb合金的热变形行为及本构关系模型[J]. 塑性工程学报, 2020, 27(6): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202006027.htm
    [24]
    周伟, 辛社伟, 葛鹏, 等. TB8钛合金晶粒长大行为的研究[J]. 钛工业进展, 2014, 31(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TGYJ201406009.htm
  • Related Articles

    [1]SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]WANG Xiu, LIU Jiaxin, FAN Xinyue, ZHOU Zili, HAN Yang, CAO Zhongqiu, WANG Yan, ZHANG Ke, XIN Shigang. Studies on corrosion resistance of nanocrystalline Cu-Co alloy in H2SO4 solution of different concentrations[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 235-242. DOI: 10.13264/j.cnki.ysjskx.2023.02.010
    [4]ZHAO Haibin, GAO Zan, LI Fusong, DONG Panpan, DAI Shiliang, FANG Huawei. Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 41-48. DOI: 10.13264/j.cnki.ysjskx.2022.05.006
    [5]CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003
    [6]DUAN Bohua, ZHANG Zhao, YANG Donglin, WANG Dezhi. Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composite material[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 59-65. DOI: 10.13264/j.cnki.ysjskx.2019.04.010
    [7]ZHANG Junchang, FENG Yan, WANG Naiguang, YANG Ming. Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 54-63. DOI: 10.13264/j.cnki.ysjskx.2017.03.009
    [8]WANG Shun-cheng, ZHENG Kai-hong, QI Wen-jun, SHI Lu, NING Chang-wei. Effect of electromagnetic stirring on microstructure and grain refining efficiency of Al-5Ti-1B grain refiner[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 58-62. DOI: 10.13264/j.cnki.ysjskx.2014.01.011
    [9]WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009
    [10]SHUI Lang, HE Dong-feng, AI Li-xiang, XU An-jun, TIAN Nai-yuan. An analytical method for waste energy recycling in metallurgical production[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 43-48. DOI: 10.13264/j.cnki.ysjskx.2012.01.019

Catalog

    Article Metrics

    Article views (136) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return