Citation: | ZHANG Junchang, FENG Yan, WANG Naiguang, YANG Ming. Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 54-63. DOI: 10.13264/j.cnki.ysjskx.2017.03.009 |
[1] |
HAHN R, MAINERT J, GLAW F, et al. Sea water magnesium fuel cell power supply[J]. Journal of Power Sources, 2015, 288(15): 26-35.
|
[2] |
冯艳, 王日初, 彭超群.海水电池用镁阳极的研究与应用[J].中国有色金属学报, 2011, 21(2): 259-268. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102004.htm
|
[3] |
曾荣昌, 柯伟, 徐永波, 等. Mg合金的最新发展及应用前景[J].金属学报, 2001, 37(7): 673-685. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200107000.htm
|
[4] |
王乃光, 王日初, 彭超群, 等.固溶处理对AP65镁合金阳极放电活性的影响[J].中南大学学报(自然科学版), 2012, 43(6): 2120-2127. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206017.htm
|
[5] |
邓姝皓, 易丹青, 赵丽红, 等.一种新型海水电池用镁负极材料的研究[J].电源技术, 2007, 31(5): 402-405. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS200705015.htm
|
[6] |
CAO D, WU L, WANG G, et al. Electrochemical oxidation behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in sodium chloride solution[J]. Journal of Power Sources, 2008, 183(2): 799-804. doi: 10.1016/j.jpowsour.2008.06.005
|
[7] |
WANG N, WANG R, PENG C, et al. Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion[J]. Corrosion Science, 2014, 81: 85-98. doi: 10.1016/j.corsci.2013.12.005
|
[8] |
FENG Y, WANG R, YU K, et al. Activation of Mg-Hg anodes by Ga in NaCl solution[J]. Journal of Alloys and Compounds, 2009, 473(1): 215-219.
|
[9] |
FENG Y, XIONG W, ZHANG J, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8658-8668. doi: 10.1039/C6TA02574A
|
[10] |
王日初, 王乃光, 彭超群, 等. Mn对海水激活电池用AP65镁合金阳极材料电化学性能的影响[J].有色金属科学与工程, 2013, 4(3): 1-8. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201305008
|
[11] |
金和喜, 王日初, 彭超群, 等. Sn对AP65镁阳极显微组织和电化学性能的影响[J].矿冶工程, 2011, 31(5): 97-101. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201105030.htm
|
[12] |
ZHAO J, YU K, HU Y, et al. Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery[J]. ElectrochimicaActa, 2011, 56(24): 8224-8231. doi: 10.1016/j.electacta.2011.06.065
|
[13] |
YU K, TAN X, HU Y, et al. Microstructure effects on the electrochemical corrosion properties of Mg–4.1% Ga-2.2% Hg alloy as the anode for seawater-activated batteries[J]. Corrosion Science, 2011, 53(5): 2035-2040. doi: 10.1016/j.corsci.2011.01.040
|
[14] |
黄丽华, 张涛, 章晓波.热处理和挤压对WE53镁合金组织与力学性能的影响[J].有色金属科学与工程, 2014, 5(6):67-70. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201406011
|
[15] |
ZHANG Z, XU H. Corrosion and mechanical properties of hot-extruded AZ31 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 140-144. doi: 10.1016/S1003-6326(10)60190-2
|
[16] |
赵彦宾, 房中学.铸造和挤压镁合金牺牲阳极的应用进展[J].全面腐蚀控制, 2010(1): 29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201001012.htm
|
[17] |
ZHANG T, MENG G, SHAO Y, et al. Corrosion of hot extrusion AZ91 magnesium alloy. Part Ⅱ: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corrosion Science, 2011, 53(9): 2934-2942. doi: 10.1016/j.corsci.2011.05.035
|
[18] |
BEN-HAROUSH M, BEN-HAMU G, ELIEZER D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science, 2008, 50(6): 1766-1778. doi: 10.1016/j.corsci.2008.03.003
|
[19] |
JEONG Y, KIM W. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion[J]. Corrosion Science, 2014, 82: 392-403. doi: 10.1016/j.corsci.2014.01.041
|
[20] |
WANG N, WANG R, PENG C, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery[J]. Electrochimica Acta, 2014, 149(10): 193-205.
|
[21] |
LIN M C, TSAI C Y, UAN J Y. Electrochemical behaviour and corrosion performance of Mg-Li-Al-Zn anodes with high Al composition[J]. Corrosion Science, 2009, 51(10): 2463-2472. doi: 10.1016/j.corsci.2009.06.036
|
[22] |
SRINIVASAN A, PILLAI U S T, PAI B C. Effect of Pb addition on ageing behavior of AZ91 magnesium alloy[J]. Materials Science and Engineering: A, 2007, 452/453: 87-92. doi: 10.1016/j.msea.2006.10.119
|
[23] |
HAMU G B, ELIEZER D, WAGNER L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2009, 468(1/2): 222-229.
|
[24] |
SONG D, MA A B, JIANG J H, et al. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing[J]. Corrosion Science, 2011, 53(1): 362-373. doi: 10.1016/j.corsci.2010.09.044
|
[25] |
ZHANG T, SHAO Y, MENG G, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53(5): 1960-1968. doi: 10.1016/j.corsci.2011.02.015
|
[26] |
SONG D, MA A, JIANG J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution[J]. Corrosion Science, 2010, 52(2): 481-490. doi: 10.1016/j.corsci.2009.10.004
|
[27] |
AUNG N N, ZHOU W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52(2): 589-594. doi: 10.1016/j.corsci.2009.10.018
|
[28] |
BEN-HAROUSH M, BEN-HAMU G, ELIEZER D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science, 2008, 50(6): 1766-1778. doi: 10.1016/j.corsci.2008.03.003
|
[29] |
ARGADE G R, PANIGRAHI S K, MISHRA R S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium[J]. Corrosion Science, 2012, 58: 145-151. doi: 10.1016/j.corsci.2012.01.021
|
[30] |
LIAO J, HOTTA M, YAMAMOTO N. Corrosion behavior of fine-grained AZ31B magnesium alloy[J]. Corrosion Science, 2012, 61: 208-214. doi: 10.1016/j.corsci.2012.04.039
|
[31] |
KIM J G, JOO J H, KOO S J. Development of high-driving potential and high-efficiency Mg based sacrificial anodes for cathodicprotection[J]. Journal of Materials Science Letters, 2000, 19(6): 477-479. doi: 10.1023/A:1006789217304
|
[32] |
YUASA M, HUANG X, SUZUKI K, et al. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries[J]. Journal of Power Sources, 2015, 297: 449-456. doi: 10.1016/j.jpowsour.2015.08.042
|
[33] |
ANDREI M, GABRIELE F D, BONORA P L, et al. Corrosion behaviour of magnesium sacrificial anodes in tap water[J]. Materials and corrosion, 2003, 54(1): 5-11. doi: 10.1002/(ISSN)1521-4176
|
[34] |
JöNSSON M, THIERRY D, LEBOZEC N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J]. Corrosion Science, 2006, 48(5): 1193-1208. doi: 10.1016/j.corsci.2005.05.008
|
[35] |
MERINO M C, PARDO A, ARRABAL R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog[J]. Corrosion Science, 2010, 52(5): 1696-1704. doi: 10.1016/j.corsci.2010.01.020
|
[36] |
NESTORIDI M, PLETCHE D, WOOD R J K, et al. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes[J]. Journal of Power Sources, 2008, 178(1):445-455. doi: 10.1016/j.jpowsour.2007.11.108
|
[1] | XU Jie, RUAN Tingting, MA Quanxin, SUN Rong, LU Shengli. Advances in anode modification strategies for aqueous zinc ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 513-526. DOI: 10.13264/j.cnki.ysjskx.2024.04.006 |
[2] | ZHAO Zhengang, NIU Wenhui, YAO Zhengyin, HOU Minjie, XIE Zhipeng, ZHANG Da, LIANG Feng. Long lifespan quasi-solid-state sodium-air batteries based on Na-BP-DME@C anode[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 204-211. DOI: 10.13264/j.cnki.ysjskx.2024.02.007 |
[3] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[4] | LIU Xiaojuan, WANG Chunxiang, WU Yonglin, ZHONG Xiaohui, LIAO Simin, LI Zhifeng. Research progress of NaTi2(PO4)3 anode materials for aqueous sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 489-500. DOI: 10.13264/j.cnki.ysjskx.2023.04.007 |
[5] | GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009 |
[6] | XU Yangming, CUI Qiang, WANG Yaqin, SHI Kexin, TONG jinlin, WANG Bin. Composition optimization and electrochemical properties of Mg-Al-Pb-Ga-Y alloys as anodes for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 51-58. DOI: 10.13264/j.cnki.ysjskx.2019.04.009 |
[7] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[8] | ZHANG Yangrong, CHEN Hao, XIONG Wei. Tribological performance of AlCrN coating sliding against Si-based ceramic balls in ambient air and seawater conditions[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 99-104. DOI: 10.13264/j.cnki.ysjskx.2017.01.017 |
[9] | WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009 |
[10] | XIA Li-bin, LUO Jun, TIAN Lei. The Anode Leaching Study from Waste and Used Ni-MH Battery[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 32-33. |