Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Junchang, FENG Yan, WANG Naiguang, YANG Ming. Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 54-63. DOI: 10.13264/j.cnki.ysjskx.2017.03.009
Citation: ZHANG Junchang, FENG Yan, WANG Naiguang, YANG Ming. Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 54-63. DOI: 10.13264/j.cnki.ysjskx.2017.03.009

Effect of extrusion ratio on discharge performance of AP65 magnesium alloy as anode for seawater activated battery

More Information
  • Received Date: March 07, 2017
  • Published Date: June 29, 2017
  • AP65 magnesium alloy is an attractive candidate for the anode of higher-power seawater activated battery because of its strong discharge activity. In practical applications, plastic forming such as hot extrusion is usually adopted to fabricate the AP65 sheets for serving as the battery anodes. Thus, the extrusion ratio obviously affects the microstructure and discharge behavior of AP65. The effect of different extrusion ratios (8.2:1, 12.3:1 and 24.5:1) on the discharge behavior and microstructure of AP65 were systematically investigated. The results indicate that the sample with the extrusion ratio of 12.3:1 has uniformly refined grains, low density of dislocations, and fractured Al8Mn5 phase, thus leading to more negative discharge potential (-1.780 V vs. SCE) and higher anodic efficiency (87.7±0.2) %) than other extruded samples. Therefore, the electrochemical performance of AP65 rises first and then declines as the extrusion ratio increases with the extrusion speed of 0.05 m/s at 450 ℃, and the discharge properties achieve the optimal value when the extrusion ratio is close to 12.3:1.
  • [1]
    HAHN R, MAINERT J, GLAW F, et al. Sea water magnesium fuel cell power supply[J]. Journal of Power Sources, 2015, 288(15): 26-35.
    [2]
    冯艳, 王日初, 彭超群.海水电池用镁阳极的研究与应用[J].中国有色金属学报, 2011, 21(2): 259-268. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201102004.htm
    [3]
    曾荣昌, 柯伟, 徐永波, 等. Mg合金的最新发展及应用前景[J].金属学报, 2001, 37(7): 673-685. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB200107000.htm
    [4]
    王乃光, 王日初, 彭超群, 等.固溶处理对AP65镁合金阳极放电活性的影响[J].中南大学学报(自然科学版), 2012, 43(6): 2120-2127. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206017.htm
    [5]
    邓姝皓, 易丹青, 赵丽红, 等.一种新型海水电池用镁负极材料的研究[J].电源技术, 2007, 31(5): 402-405. http://www.cnki.com.cn/Article/CJFDTOTAL-DYJS200705015.htm
    [6]
    CAO D, WU L, WANG G, et al. Electrochemical oxidation behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in sodium chloride solution[J]. Journal of Power Sources, 2008, 183(2): 799-804. doi: 10.1016/j.jpowsour.2008.06.005
    [7]
    WANG N, WANG R, PENG C, et al. Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion[J]. Corrosion Science, 2014, 81: 85-98. doi: 10.1016/j.corsci.2013.12.005
    [8]
    FENG Y, WANG R, YU K, et al. Activation of Mg-Hg anodes by Ga in NaCl solution[J]. Journal of Alloys and Compounds, 2009, 473(1): 215-219.
    [9]
    FENG Y, XIONG W, ZHANG J, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8658-8668. doi: 10.1039/C6TA02574A
    [10]
    王日初, 王乃光, 彭超群, 等. Mn对海水激活电池用AP65镁合金阳极材料电化学性能的影响[J].有色金属科学与工程, 2013, 4(3): 1-8. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201305008
    [11]
    金和喜, 王日初, 彭超群, 等. Sn对AP65镁阳极显微组织和电化学性能的影响[J].矿冶工程, 2011, 31(5): 97-101. http://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201105030.htm
    [12]
    ZHAO J, YU K, HU Y, et al. Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery[J]. ElectrochimicaActa, 2011, 56(24): 8224-8231. doi: 10.1016/j.electacta.2011.06.065
    [13]
    YU K, TAN X, HU Y, et al. Microstructure effects on the electrochemical corrosion properties of Mg–4.1% Ga-2.2% Hg alloy as the anode for seawater-activated batteries[J]. Corrosion Science, 2011, 53(5): 2035-2040. doi: 10.1016/j.corsci.2011.01.040
    [14]
    黄丽华, 张涛, 章晓波.热处理和挤压对WE53镁合金组织与力学性能的影响[J].有色金属科学与工程, 2014, 5(6):67-70. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201406011
    [15]
    ZHANG Z, XU H. Corrosion and mechanical properties of hot-extruded AZ31 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 140-144. doi: 10.1016/S1003-6326(10)60190-2
    [16]
    赵彦宾, 房中学.铸造和挤压镁合金牺牲阳极的应用进展[J].全面腐蚀控制, 2010(1): 29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-QMFK201001012.htm
    [17]
    ZHANG T, MENG G, SHAO Y, et al. Corrosion of hot extrusion AZ91 magnesium alloy. Part Ⅱ: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corrosion Science, 2011, 53(9): 2934-2942. doi: 10.1016/j.corsci.2011.05.035
    [18]
    BEN-HAROUSH M, BEN-HAMU G, ELIEZER D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science, 2008, 50(6): 1766-1778. doi: 10.1016/j.corsci.2008.03.003
    [19]
    JEONG Y, KIM W. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion[J]. Corrosion Science, 2014, 82: 392-403. doi: 10.1016/j.corsci.2014.01.041
    [20]
    WANG N, WANG R, PENG C, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery[J]. Electrochimica Acta, 2014, 149(10): 193-205.
    [21]
    LIN M C, TSAI C Y, UAN J Y. Electrochemical behaviour and corrosion performance of Mg-Li-Al-Zn anodes with high Al composition[J]. Corrosion Science, 2009, 51(10): 2463-2472. doi: 10.1016/j.corsci.2009.06.036
    [22]
    SRINIVASAN A, PILLAI U S T, PAI B C. Effect of Pb addition on ageing behavior of AZ91 magnesium alloy[J]. Materials Science and Engineering: A, 2007, 452/453: 87-92. doi: 10.1016/j.msea.2006.10.119
    [23]
    HAMU G B, ELIEZER D, WAGNER L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds, 2009, 468(1/2): 222-229.
    [24]
    SONG D, MA A B, JIANG J H, et al. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing[J]. Corrosion Science, 2011, 53(1): 362-373. doi: 10.1016/j.corsci.2010.09.044
    [25]
    ZHANG T, SHAO Y, MENG G, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53(5): 1960-1968. doi: 10.1016/j.corsci.2011.02.015
    [26]
    SONG D, MA A, JIANG J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution[J]. Corrosion Science, 2010, 52(2): 481-490. doi: 10.1016/j.corsci.2009.10.004
    [27]
    AUNG N N, ZHOU W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52(2): 589-594. doi: 10.1016/j.corsci.2009.10.018
    [28]
    BEN-HAROUSH M, BEN-HAMU G, ELIEZER D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures[J]. Corrosion Science, 2008, 50(6): 1766-1778. doi: 10.1016/j.corsci.2008.03.003
    [29]
    ARGADE G R, PANIGRAHI S K, MISHRA R S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium[J]. Corrosion Science, 2012, 58: 145-151. doi: 10.1016/j.corsci.2012.01.021
    [30]
    LIAO J, HOTTA M, YAMAMOTO N. Corrosion behavior of fine-grained AZ31B magnesium alloy[J]. Corrosion Science, 2012, 61: 208-214. doi: 10.1016/j.corsci.2012.04.039
    [31]
    KIM J G, JOO J H, KOO S J. Development of high-driving potential and high-efficiency Mg based sacrificial anodes for cathodicprotection[J]. Journal of Materials Science Letters, 2000, 19(6): 477-479. doi: 10.1023/A:1006789217304
    [32]
    YUASA M, HUANG X, SUZUKI K, et al. Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries[J]. Journal of Power Sources, 2015, 297: 449-456. doi: 10.1016/j.jpowsour.2015.08.042
    [33]
    ANDREI M, GABRIELE F D, BONORA P L, et al. Corrosion behaviour of magnesium sacrificial anodes in tap water[J]. Materials and corrosion, 2003, 54(1): 5-11. doi: 10.1002/(ISSN)1521-4176
    [34]
    JöNSSON M, THIERRY D, LEBOZEC N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J]. Corrosion Science, 2006, 48(5): 1193-1208. doi: 10.1016/j.corsci.2005.05.008
    [35]
    MERINO M C, PARDO A, ARRABAL R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog[J]. Corrosion Science, 2010, 52(5): 1696-1704. doi: 10.1016/j.corsci.2010.01.020
    [36]
    NESTORIDI M, PLETCHE D, WOOD R J K, et al. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes[J]. Journal of Power Sources, 2008, 178(1):445-455. doi: 10.1016/j.jpowsour.2007.11.108
  • Related Articles

    [1]XU Jie, RUAN Tingting, MA Quanxin, SUN Rong, LU Shengli. Advances in anode modification strategies for aqueous zinc ion batteries[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 513-526. DOI: 10.13264/j.cnki.ysjskx.2024.04.006
    [2]ZHAO Zhengang, NIU Wenhui, YAO Zhengyin, HOU Minjie, XIE Zhipeng, ZHANG Da, LIANG Feng. Long lifespan quasi-solid-state sodium-air batteries based on Na-BP-DME@C anode[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 204-211. DOI: 10.13264/j.cnki.ysjskx.2024.02.007
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]LIU Xiaojuan, WANG Chunxiang, WU Yonglin, ZHONG Xiaohui, LIAO Simin, LI Zhifeng. Research progress of NaTi2(PO4)3 anode materials for aqueous sodium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 489-500. DOI: 10.13264/j.cnki.ysjskx.2023.04.007
    [5]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [6]XU Yangming, CUI Qiang, WANG Yaqin, SHI Kexin, TONG jinlin, WANG Bin. Composition optimization and electrochemical properties of Mg-Al-Pb-Ga-Y alloys as anodes for seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 51-58. DOI: 10.13264/j.cnki.ysjskx.2019.04.009
    [7]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [8]ZHANG Yangrong, CHEN Hao, XIONG Wei. Tribological performance of AlCrN coating sliding against Si-based ceramic balls in ambient air and seawater conditions[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 99-104. DOI: 10.13264/j.cnki.ysjskx.2017.01.017
    [9]WANG Ri-chu, WANG Nai-guang, PENG Chao-qun, ZENG Su-ming. Effect of manganese on electrochemical performance of magnesium alloy anode AP65 used in seawater activated battery[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 1-8, 48. DOI: 10.13264/j.cnki.ysjskx.2013.03.009
    [10]XIA Li-bin, LUO Jun, TIAN Lei. The Anode Leaching Study from Waste and Used Ni-MH Battery[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 32-33.

Catalog

    Article Metrics

    Article views (75) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return