Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHAO Haibin, GAO Zan, LI Fusong, DONG Panpan, DAI Shiliang, FANG Huawei. Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 41-48. DOI: 10.13264/j.cnki.ysjskx.2022.05.006
Citation: ZHAO Haibin, GAO Zan, LI Fusong, DONG Panpan, DAI Shiliang, FANG Huawei. Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 41-48. DOI: 10.13264/j.cnki.ysjskx.2022.05.006

Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations

More Information
  • Received Date: October 25, 2021
  • Revised Date: December 09, 2021
  • Available Online: November 07, 2022
  • A one-way thermal compression experiment of Al-0.2Sc-0.04Zr aluminum alloy on the Gleeble -3000D thermal simulator was conducted to study the thermal deformation behavior under the strain rate of 0.001~5 s-1 and a thermal deformation teperature of 440~600 ℃. The results show that the degree of dynamic recrystallization increases with increasing deformation temperature or decreasing strain rate. Meanwhile, for deformation at lower temperatures (T≤520 ℃), the main softening mechanism is dynamic recovery, and for deformation at higher temperatures (T>520 ℃), the softening mechanism changed to a dynamic recrystallization softening mechanism, obtaining a relatively complete dynamic recrystallization structure. Deformed at high temperatures (T≥600 ℃), the grains grow significantly. By analyzing the stress index and the deformation activation energy, the stress index (n) increases with increasing deformation temperature. The deformation activation energy (Q) increases with increasing deformation temperature and strain rate within the range of experimental temperatures. The peak stress of the Al-0.2Sc-0.04Zr alloy was analyzed by the hyperbolic-sine Arrhenius constitutive equation, and the average absolute relative error (AARE) between the predicted value and measured value of the alloy is only 7.428% as well as the correlation coefficient (R) 0.9708.
  • [1]
    陈贵清, 傅高升, 王军德, 等. 3003铝合金热变形流变应力及动态再结晶模型[J]. 材料科学与工程学报, 2019, 37(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201902008.htm
    [2]
    高岩, 丛大鹏, 于春鹏, 等. 7A85航空铝合金热加工过程的本构变形行为及组织演变[J]. 塑性工程学报, 2019, 26(5): 231-237. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC201905035.htm
    [3]
    王敬, 梁强, 李永亮. 2219铝合金的动态软化及热流变行为研究[J]. 兵器材料科学与工程, 2020, 43(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG202005027.htm
    [4]
    郭琦, 徐国富, 黄继武, 等. 新型Al-Mg-Sc-Zr合金显微组织和性能研究[J]. 稀有金属, 2019, 43(3): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201903005.htm
    [5]
    KRUG M E, SEIDMAN D N, DUNAND D C. Creep properties and precipitate evolution in Al-Li alloys microalloyed with Sc and Yb[J]. Materials Science and Engineering A, 2012, 550(30): 300-311.
    [6]
    王孝国, 李秋书, 杨光印, 等. 固溶时效对7K01铝合金组织和硬度及电导率的影响[J]. 特种铸造及有色合金, 2019, 39(5): 480-482. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201905007.htm
    [7]
    KNIPLING K E, KARNESKY R A, LEE C P, et al. Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at. %) alloys during isochronal aging[J]. Acta Mater, 2010, 58(15): 5184-5195.
    [8]
    LI J W, CAI B, ZHOU W W. Aging behavior and electric conductivity of a new heat resistant Al-0.2Sc-0.04Zr alloy[J]. Special Casting and Nonferrous Alloys, 2011, 31(11): 1070-1073.
    [9]
    陈伟, 陈雪姣, 魏瑞启, 等. 热挤+冷轧Al-0.2Sc-0.04(Zr, Yb)合金的力学性能和导电性[J]. 特种铸造及有色合金, 2016, 36(6): 660-663. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201606030.htm
    [10]
    李卫华. Al-Sc-Zr合金的时效行为的研究[D]. 郑州: 郑州大学, 2009.
    [11]
    LI Z H, CAI B, LIU Q, et al. Ageing strengthening and electrical conductivity of A1-xSc-0.04Zr(x=0, 0.1%, 0.2%and 0.4%)[J]. Special Casting and Nonferrous Alloys, 2010, 30(5): 476-480.
    [12]
    李金文, 蔡彬, 周伟伟. A1-0.2Sc-0.04Zr(0.01B)合金的时效行为和导电性[J]. 特种铸造及有色合金, 2011, 31(11): 1070-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201111038.htm
    [13]
    凌程. 连续流变挤压与形变热处理制备Al-Ag-Sc-Zr合金导线的研究[D]. 沈阳: 东北大学, 2015.
    [14]
    刘俊生, 潘清林, 李文斌, 等. 含Sc超高强AI-Zn-Cu-Mg-Zr合金的热变形行为和微观组织[J]. 材料科学与工艺, 2010, 18(2): 289-292.
    [15]
    杨文哲, 刘秀成, 龚裕, 等. 拉应力对45钢磁滞与磁致伸缩曲线的影响规律[J]. 中国测试, 2020, 46(4): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202004023.htm
    [16]
    刘磊, 吴运新, 龚海, 等. 2219铝合金中温变形过程本构模型的修正及其激活能演化[J]. 中国有色金属学报, 2019(3): 448-459. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSY201903002.htm
    [17]
    陈文, 杨晓敏, 滕奇志. 一种新的铝合金晶界检测算法及应用[J]. 中国测试技术, 2005, 31(3): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS200503021.htm
    [18]
    XIE J F, ZHU Y L, BIAN F L, et al. Dynamic recovery and recrystallization mechanisms during ultrasonic spot welding of Al-Cu-Mg alloy[J]. Materials Characterization, 2017, 132: 145-155.
    [19]
    NAYAN N, MURTY S V N, CHHANGANI S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of A1-Cu-Li alloy[J]. Journal of Alloys and Compounds, 2017, 723: 548-558.
    [20]
    WU H, WEN S P, HUANG H, et al. Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression[J]. Materials Science and Engineering A, 2016, 651: 415-424.
    [21]
    吴道祥, 梁强, 王敬. 2024A铝合金高温流变行为及本构关系研究[J]. 特种铸造及有色合金, 2020, 40(3): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ202003002.htm
    [22]
    LI D, ZHU Z, XIAO S, et al. Plastic flow behavior based on thermal activation and dynamic constitutive equation of 25CrMo4 steel during impact compression[J]. Materials Science and Engineering A, 2017, 707: 459-465.
    [23]
    SUN Y, YE W, HU L X. Constitutive modeling of high-temperature flow behavior of Al-0.62Mg-0.73Si aluminum alloy[J]. Journal of Materials Engineering and Performance, 2016, 25(4): 1621-1630.
    [24]
    ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
    [25]
    吴文祥, 韩逸, 钟皓, 等. 2026铝合金热压缩变形流变应力行为[J]. 中国有色金属学报, 2009, 19(8): 1403-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200908009.htm
    [26]
    ZHANG T, ZHANG S H, LI L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression[J]. Journal of Central South University, 2019, 26: 2930-2942.
    [27]
    仇鹏, 王家毅, 段晓鸽, 等. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202008019.htm
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]WANG Xiaofeng, CHEN Hongjun, ZHOU Hongli, PENG Chaoqun, WANG Richu, ZENG Jing. Rheological properties of SiC suspension for direct ink writing[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 80-86. DOI: 10.13264/j.cnki.ysjskx.2024.01.010
    [3]YANG Jiguang, WANG Yihai, WU Zaihai, TONG Chuan, LI Guangbo, SONG Zepu, JING Xiaodong, GUO Jiaren, WANG Yuliang. Analysis on rheological characteristics and microstructure of high concentration filling the tailings from a gold mine[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 249-256. DOI: 10.13264/j.cnki.ysjskx.2023.02.012
    [4]LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006
    [5]ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009
    [6]LI Pengfei, DENG Chiqing, LIN Xinbo, QI Liang, YAO Youfu, XU Gaolei. Research on the hot deformation of upward continuous casting TU1[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 69-74. DOI: 10.13264/j.cnki.ysjskx.2019.03.012
    [7]LIU Xin, LI Qiangfeng, WANG Zhigang, ZHANG Yinghui, XIE Jianming, LIU Weining. Hot deformation behavior and constitutive equation of low alloy micro-carbon steel[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 53-59. DOI: 10.13264/j.cnki.ysjskx.2018.04.009
    [8]CHENG Chen, LEI Min, WAN Mingpan, CAI Gang. High temperature deformation behavior of BT25 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 51-56. DOI: 10.13264/j.cnki.ysjskx.2017.06.008
    [9]LUO Tao, ZHANG Liang, JIANG Liangliang, FENG Xiao. Testing on the rheological properties of the high-density slurry of the full tailings and its pipeline transportation[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 86-90. DOI: 10.13264/j.cnki.ysjskx.2015.04.018
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
  • Cited by

    Periodical cited type(2)

    1. 朱宁远,陈秋明,陈世豪,左寿彬. TC11钛合金动态回复与动态再结晶高温本构模型研究. 有色金属科学与工程. 2024(01): 58-66 . 本站查看
    2. 翟梓棫,潘炜,梁博,刘彦涛,张永忠. 热处理对选区激光熔化制备Al-Mn-Mg-Sc-Zr合金微观组织和力学性能的影响. 稀有金属. 2024(03): 325-335 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (174) PDF downloads (9) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return