Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LEI Meng, YIN Congling, LEI Xiuyun. Novel layered compound Bi3O3O3 SeBr with multi-anions: crystal structure and physical properties[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 34-40. DOI: 10.13264/j.cnki.ysjskx.2019.03.006
Citation: LEI Meng, YIN Congling, LEI Xiuyun. Novel layered compound Bi3O3O3 SeBr with multi-anions: crystal structure and physical properties[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 34-40. DOI: 10.13264/j.cnki.ysjskx.2019.03.006

Novel layered compound Bi3O3O3 SeBr with multi-anions: crystal structure and physical properties

More Information
  • Received Date: March 24, 2019
  • Published Date: June 29, 2019
  • Bi3O3O3SeBr was synthesized via traditional high temperature solid state reaction. Powder X-ray diffraction, DFT calculations, diffused reflectance spectroscopy and photoelectric measurements were used to characterize the crystal structure and physical properties of Bi3O3O3SeBr. Experimental results show that the Bi3O3O3SeBr crystallizes in space group P4/nmm with unit cell parameters a=3.922 84(6) Ǻ and c=20.238 14(3) Ǻ. Its crystal structure consists of Bi2O2 layers, Se2- layers and Br- layers. The Se2- layers and Br- layers are stacked between Bi2O2 layers, forming the structural units of Bi2O2Se and BiOBr. Bi3O3O3SeBr can be seen to be composed of the structural units of Bi2O2Se and BiOBr sharing the Bi2O2 layers along the c direction. Bi3O3O3SeBr is n-type semiconductor with narrow indirect band gap of 0.44 eV. The energy states at the top of the valence band are dominated by Se 4p states, while those at the bottom of the conduction band are dominated by Bi 6p states. Irradiated by visible light, Bi3O3O3SeBr shows a reliable photo-electric response. Its photo current density is 0.70 μA/cm2, superior to that of Bi2O2Se, indicating its prospect for application in photodetection.
  • [1]
    KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K[J]. Journal the American Chemical Society, 2008, 130(11):3296-3297. doi: 10.1021/ja800073m
    [2]
    ZHAO L D, HE J, BERARDAN D, et al. BiCuSeO oxyselenides: new promising thermoelectric materials[J]. Energy & Environmental Science, 2014, 7(9):2900-2924. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226958148/
    [3]
    DOUSSIER-BROCHARD C, CHAVILLON B, CARIO L. et al. Synthesis of p-type transparent LaOCuS nanoparticles via soft chemistry[J]. Inorganic Chemistry, 2010, 49(7): 3074-3076. doi: 10.1021/ic902521r
    [4]
    ZHU X, HAN F, MU G, et al. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K[J]. Physical Review B 2009, 79(22):2205121-2205124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7c3de91fb4b24cc8ae7f3316f40b050
    [5]
    LIU R, SONG Y, LI Q, et al. Structure and Physical Properties of the Layered Pnictide-Oxides: (SrF)2Ti2Pn2O (Pn = As, Sb) and (SmO)2Ti2Sb2O[J]. Chemistry of Material 2010, 22(4):1503-1508. doi: 10.1021/cm9027258
    [6]
    KABBOUR H, JANOD E, CORRAZE B, et al. Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2(A=Sr, Ba; Q=S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice[J]. Journal of the American Chemical Society, 2008, 130(26):8261-8270. doi: 10.1021/ja711139g
    [7]
    FREE D G, EVANS J S, Low-temperature nuclear and magnetic structures of La2O2Fe2OSe2 from x-ray and neutron diffraction measurements[J]. Physical Review B 2010, 81(21): 2144331-2144337.
    [8]
    EUL M, JOHRENDT D, PöTTGENA R, An extension of pnictide oxide chemistry-salt flux synthesis and structure of La5Cu4As4O4Cl2[J]. Zeitschrift fur Naturforschung Section B-a journal of Chemical Sciences, 2009, 64(11): 1353-1359.
    [9]
    GIBSON Q D, DYER M S, WHITEHEAD G F S et al. Bi4O4Cu1.7Se2.7Cl0.3: intergrowth of BiOCuSe and Bi2O2Se stabilized by the addition of a third anion[J]. Journal of the American Chemical Society 2017, 139(44): 15568-15571.
    [10]
    LI H, HU T, DU N, et al. Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets[J]. Applied Catalysis B: Environmental, 2016, 187(15):342-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=951ad7cfd819ddfdae574232d94cca48
    [11]
    TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package[J]. Journal of Applied Crystallography, 2013, 46(2), 544-549. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229301379/
    [12]
    DONG C. PowderX: Windows-95-based program for powder X-ray diffraction data processing[J]. Journal of Applied Crystallography 1999, 32(4):838. http://d.old.wanfangdata.com.cn/Periodical/gpsys200406004
    [13]
    ALTOMARE A, BURLA M C, CASCARANO G, et al. EXTRA: Aprogram for extracting structure-factor amplitudes from powder diffraction data[J]. Journal of Applied Crystallography, 1995, 28(6):842-846. doi: 10.1107/S0021889895005619
    [14]
    YIN C L, LI G B, JIN T N, et al. Synthesis, structure, and characterization of the hexagonal provskite Ba5In0.93Mn4O14.40[J]. Chemistry of Materials, 2008, 20(6):2110-2116. doi: 10.1021/cm7025152
    [15]
    孙鹏, 尹从岭, 雷秀云. Pb3Mn7O15:合成、相变、转换和分解[J].有色金属科学与工程, 2017, 8(1):75-79. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701013
    [16]
    吕庆文, 尹从岭, 钟盛文, 等. LiNi0.6Co0.1Mn0.3O2正极材料的合成与性能[J].有色金属科学与工程, 2016, 7(4):50-54. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201704012
    [17]
    WU J X, YUAN H T, MENG M M, et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se[J]. Nature Nanotechnology, 2017, 12(6):530-534. doi: 10.1038/nnano.2017.43
    [18]
    ZHAO L Z, ZHANG J B, Bi and O valences in Ba-K-Bi-O, Ba-K-M-Bi-O (M = Rb, La, Eu, In, Tl and Pb) and the related compounds[J]. Solid State Communications, 1994, 90(11): 709-712.
    [19]
    MORGAN W E, VAN WAZER J R, STEC W J. Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates[J]. Journal of the American Chemical Society 1973, 95(3):751-755. doi: 10.1021/ja00784a018
    [20]
    CAHEN D, IRELAND P J, KAZMERSKI L L, et al. X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2 photoelectrodes[J]. Journal of Applied Physics 1985, 57(10):4761-4771. doi: 10.1063/1.335341
    [21]
    KONG D S, CHA J J, LAI K J, et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3[J]. ACS nano 2011, 5(6):4698-4703. doi: 10.1021/nn200556h
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [3]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [4]ZHAO Kui, SHAO Hai, XU Feng, ZENG Peng, DENG Xiao-ping, WANG Ming. Numerical simulation of stability of mining of different mining entrances in a copper mine[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 46-50. DOI: 10.13264/j.cnki.ysjskx.2013.02.009
    [5]FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006
    [6]WU Chang-fu, TANG Min-bo, GU Peng, LIU Hou-ming. Numerical simulation on the partial ventilation in the single entry mine tunnel[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 71-73. DOI: 10.13264/j.cnki.ysjskx.2012.03.014
    [7]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [8]XU Cong-wu, ZHAO Kui, XIE Dao-hui. Numerical Simulation Research on Tunnel Arrangement in Schistosity Rock[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 6-8.
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.

Catalog

    Article Metrics

    Article views (115) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return