Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009
Citation: GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009

Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium

More Information
  • Received Date: December 19, 2023
  • Revised Date: April 21, 2024
  • With Al-8.67Zn-2.5Mg-2.5Cu aluminum alloy as the research object, using Jmatpro software to simulate and calculate the alloy phase diagram and properties, the optimal amount of Sc element added and its heat treatment process was determined, and alloy ingots were prepared through electric arc furnace. The influence of Sc element and solid solution aging process on the microstructure evolution of the sample was studied, and the strengthening mechanism of the alloy was explored. The results indicate that the tensile strength and hardness of the alloy were maximized when 0.25% Sc element was added, and the polarization of Al 3 Sc can be avoided. The numerically simulated hardness and tensile strength of the Al-8.67Zn-2.5Mg-2.5Cu-0.25Sc alloy are 139.13 HV and 424.12 MPa, respectively. The optimal heat treatment process for the alloy, including homogenization, solid solution, and aging, is 475 ℃/24 h+482 ℃+25 ℃/16 h. By cooling the samples at a cooling rate greater than 174.23 ℃/s and transferring them to the solid solution for less than 0.42 seconds, second-phase precipitation can be inhibited, resulting in an oversaturated solid solution. After homogenization heat treatment of the as-cast aluminum alloy, the hardness, tensile strength, and elongation are 139.86 HV, 432.1 MPa and 10.31%, respectively. After solid solution and aging, the hardness, tensile strength, and elongation of the alloy are increased by 35.42 HV, 146.6 MPa and 2.4%, respectively.

  • [1]
    甘卫平,范洪涛,许可勤,等.Al-Zn-Mg-Cu系高强铝合金研究进展[J].铝加工,2003(3):6-12.
    [2]
    刘安民,刘胜胆,杨梦楚,等.镁元素含量对超高强铝合金屈服强度淬火敏感性的影响[J].中国有色金属学报,2024,34(5):1519-1528.
    [3]
    于含樟,杜依诺,徐磊,等.超重力对梯度Al-Zn-Mg-Cu合金成分和微观组织的影响[J].有色金属科学与工程, 2024,15(2):167-179.
    [4]
    燕云程,黄蓓,李维俊,等.Al-Zn-Mg-Cu系超高强度铝合金的研究进展[J].材料导报,2018,32(增刊2):358-364.
    [5]
    马思怡,张伟健,苏睿明,等.7xxx系铝合金回归再时效的研究现状[J].有色金属科学与工程,2022,13(2):38-50.
    [6]
    杜明星,冷金凤,李展志,等.固溶-时效过程中微量Er和Zr添加对6082铝合金力学性能的影响[J].有色金属科学与工程,2024,15(1):139-146.
    [7]
    张思平.含Sc铝合金的应用研究新进展与前景展望[J].铝加工,2019(2):4-9.
    [8]
    胡咏梅,张葆俊.稀土细化剂对半固态A356铝合金等温热处理组织的影响[J].有色金属科学与工程,2011,2(3):23-27,31.
    [9]
    戴晓元.含钪Al-Zn-Mg-Cu-Zr超高强铝合金组织与性能的研究[D].长沙:中南大学,2008.
    [10]
    周民,邓鸿华,甘培源,等.含钪铝合金研究进展[J].世界有色金属,2016(21):95-97.
    [11]
    黄志刚,赵飞,王日初,等.微合金化对电子封装用高硅铝合金微观组织与性能的影响[J].有色金属科学与工程,2018,9(3):22-28.
    [12]
    LENG J F,REN B H,ZHOU Q B,et al.Effect of Sc and Zr on recrystallization behavior of 7075 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2021,31(9):2545-2557.
    [13]
    LIU Y C,PAN Q L,LIU B,et al.Effect of aging treatments on fatigue properties of 6005A aluminum alloy containing Sc[J].International Journal of Fatigue,2022,163:107103.
    [14]
    YE J,PAN Q L,LIU B,et al.Study on quenching sensitivity of an Al-Zn-Mg-Cu alloy containing trace amounts of Sc and Zr[J]. Journal of Materials Science,2022,57(15):7747-7762.
    [15]
    BENARIEB I,DYNIN N V,ZAITSEV D V,et al.The structure and properties of wrought Al-Mg-Sc aluminum alloys with different scandium content[J].Physics of Metals and Metallography,2023,124(1):65-73.
    [16]
    赵立华.超高强度铝合金研究现状及发展趋势[J].四川兵工学报,2011,32(10):147-150.
    [17]
    戴晓元,夏长清,吴安如,等.含钪超高强铝合金的研究现状及发展趋势[J].材料导报,2006,20(5):104-107.
    [18]
    XIN L N, ZHOU J Q, MEI D, et al. Effects of Sc on microstructure, mechanical properties and corrosion behavior of Mg-0.5Zn-0.5Nd-xSc alloys[J].Journal of Alloys and Compounds,2023,934:168044.
    [19]
    赵一栗,吴志军.铝合金熔炼工艺与质量控制[J].内燃机与配件,2019(6):108-110.
    [20]
    LEI Z G, WEN S P, HUANG H, et al. Grain refinement of aluminum and aluminum alloys by Sc and Zr[J]. Metals,2023,13(4):751.
    [21]
    赵明铭.2324铝合金成分及热处理工艺优化数值模拟研究[D].哈尔滨:哈尔滨理工大学,2021.
    [22]
    韩宝帅,魏立军,徐严谨,等.预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J].金属学报,2020,56(7):1007-1014.
    [23]
    李念奎,崔建忠.Al-Zn-Mg-Cu系合金组织对性能的影响[J].轻合金加工技术,2008,36(1):5-10,54.
    [24]
    杨守杰,谢优华,朱娜,等.Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响[J].材料研究学报,2002,16(4):406-412.
    [25]
    CHUVIL’DEEV V N, SHADRINA Y S, NOKHRIN A V, et al. Thermal stability of the structure and mechanical properties of submicrocrystalline Al-0.5% Mg-Sc aluminum alloys[J]. Russian Metallurgy (Metally),2021(1):7-24.
    [26]
    戴晓元,喻井萍,寇莉莉.Sc微合金化对Al-Zn-Mg-Cu-Zr合金组织性能的影响[J].材料热处理学报,2010,31(6):89-94.
    [27]
    王井井,黄元春,刘宇,等.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J].有色金属科学与工程,2018,9(2):47-55.
    [28]
    沈忱,孙会,郅东东.7XXX系(Al-Zn-Mg-Cu)铝合金淬火特性的研究进展[J].有色金属科学与工程,2018,9(4):70-75.
    [29]
    李文斌,潘清林,刘俊生,等.强化固溶对含Sc超高强铝合金组织性能的影响[J].材料科学与工艺,2010,18(3):352-355,362.
    [30]
    LIU C Y,TENG G B,MA Z Y,et al.Mechanical properties and thermal stability of 7055 Al alloy by minor Sc addition[J].Rare Metals,2020,39(6):725-732.

Catalog

    Article Metrics

    Article views (17) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return