Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
Citation: LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006

Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy

More Information
  • Received Date: June 29, 2014
  • Published Date: October 30, 2014
  • Microstructure and properties of the Cu-6.0Ni-1.4Si-0.15Mg-0.1Cr alloy are studied by optical microscope, X-ray diffractometer and transmission electron microscope observation, and by Vickers hardness tester, eddy-current electrical conductivity measurement. Results show that the developed dendrite which can be divided into dendrite area, the middle transition region and non-equilibrium solidification phase particles, appears in the casting ingot. The non-equilibrium solidification phases are δ-Ni2Si and β-Ni3Si. The main strength mechanism for designed alloy is precipitation strengthening and the strengthening phases are δ-Ni2Si. After appropriate thermo-mechanical treatment, the hardness of the alloy can be 353 HV, tensile strength can reach 1 010 MPa, and yield strength is 930 MPa with enlogation being 3.8% and electrical conductivity being 29.7% IACS.
  • [1]
    Li D, Franke P, Fürtauer S, et al. The Cu-Sn phase diagram part II: New thermodynamic assessment[J]. Intermetallics, 2013, 34: 148-158. doi: 10.1016/j.intermet.2012.10.010
    [2]
    Tsubakino H, Nozato R, Yamamoto A. Precipitation sequence for simultaneous continuous and discontinuous modes in Cu-Be binary alloys[J]. Materials Science and Technology, 1993, 9(4): 288-294. doi: 10.1179/mst.1993.9.4.288
    [3]
    王艳辉, 汪明朴, 洪斌. Cu-Ni-Sn导电弹性材料的研究现状与进展[J]. 材料导报, 2003, 17(3): 24-26. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200303007.htm
    [4]
    Soffa W A, Laughlin D E. High-strength age hardening copper-titanium alloys: redivivus[J]. Progress in Materials Science, 2004, 49(3): 347-366. http://cn.bing.com/academic/profile?id=2118050038&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Shen L N, Li Z, Zhang Z M, et al.Effects of silicon and thermo-mechanical process on microstructure and properties of Cu-10Ni-3Al-0.8Si alloy[J]. Materials and Design, 2014, 62: 265-270. doi: 10.1016/j.matdes.2014.04.053
    [6]
    Markandeya R, Nagarjuna S, Sarma D S. Precipitation hardening of Cu-Ti-Cr alloys[J]. Materials Science and Engineering A, 2004, 371(1/2): 291-305. http://cn.bing.com/academic/profile?id=2069599472&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    贾延琳. 引线框架用Cu-Ni-Si系合金的制备及相关基础问题研究[D]. 长沙: 中南大学, 2012.
    [8]
    董琦祎. 低浓度Cu-Ni-Si合金的组织及性能研究[D].长沙: 中南大学, 2009.
    [9]
    张良, 超高强Cu-6.0Ni-1.4Si-0.15Mg-0.1Cr合金的组织与性能[D].长沙: 中南大学, 2011.
    [10]
    Lei Q, Li Z, Wang M P, et al. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy[J]. Journal of Alloys and Compounds, 2011, 509: 3617-3622. http://cn.bing.com/academic/profile?id=1972268624&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    Li Z, Pan Z Y, Zhao Y Y, et al. Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy[J]. Jour of Materials Reseach, 2009, 24(6): 2123-2129. doi: 10.1557/jmr.2009.0251
    [12]
    潘志勇. 超高强、高导电CuNiSi合金的组织与性能研究[D].长沙: 中南大学, 2010.
    [13]
    Watanabe C, Nishijima F, Monzen R, et al. Mechanical properties of Cu-4.0wt% Ni-0.95wt% Si alloys with and without P and Cr addition[J]. Materials Science Forum, 2007, 561-565(PART 3): 2321-2324. http://cn.bing.com/academic/profile?id=2073155853&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2008, 483-484: 117-119. doi: 10.1016/j.msea.2006.12.163
    [15]
    Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2013, 572: 65-74. doi: 10.1016/j.msea.2013.02.024
    [16]
    Lei Q, Li Z, Xiao T, et al. A new ultrahigh strength Cu-Ni-Si alloy[J]. Intermetallics, 2013, 42: 77-84. doi: 10.1016/j.intermet.2013.05.013
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [3]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [4]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [5]WU Wenbo, CUI Shuhui, ZHENG Xueqing, XING Meishan. Determination the production process of Cu-Ni-Si alloy for the motor[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2020.02.011
    [6]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [7]MA Jimiao, LIU Feng, LIU Longming, SHAO Ye, ZHENG Yun, PENG Lijun. Cold hardening and recrystallization temperature of Cu-Ni-Si-P alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 43-46. DOI: 10.13264/j.cnki.ysjskx.2017.02.007
    [8]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
    [9]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
    [10]ZHANG Ming-ming, WU Yu. On the aging behavior of Cu-Ni-Si-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 12-16. DOI: 10.13264/j.cnki.ysjskx.2012.02.017
  • Cited by

    Periodical cited type(5)

    1. 喻亮,刘远,张亚坚,姜艳丽. 热轧变形对含0.5%B的6063铝合金导电率和组织性能的影响. 热加工工艺. 2024(13): 138-141 .
    2. 张鹏,胡武,李建明,黄显赞,廖斌. 液氮通入量及挤压速度对6063铝合金型材表面质量的影响. 装备制造技术. 2023(01): 86-88 .
    3. 韩双,陈继强,谢钢平,孔重良. 刮削模具对铝合金焊丝表面刮削效果的影响. 江西冶金. 2022(02): 1-5 .
    4. 王泽群,向文杰,张婷蕊,王孟君,潘学著,王岗. Fe元素对6063铝合金挤压型材表面渣粒的影响. 矿冶工程. 2021(02): 110-114 .
    5. 闫金顺,赵鸿来. 6063-TiCe铝合金散热器的挤压工艺优化. 热加工工艺. 2021(15): 84-87 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (61) PDF downloads (11) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return