Citation: | ZENG Luxue, BIAN Zijun, NING Zhoushen, CHEN Ming, DONG Wei. Effects of terbium on acute toxicity and antioxidant enzyme activity of zebrafish[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 623-632. DOI: 10.13264/j.cnki.ysjskx.2024.04.018 |
The acute toxicity of Terbium (Tb) to zebrafish (Danio rerio) was investigated by a semi-static acute exposure test. Based on the acute toxicity test, the concentration groups of low (2.0 mg/L), medium (20.0 mg/L), and high (40.0 mg/L) of Tb were set up to determine the toxicological effects of Tb on zebrafish by analyzing catalase (CAT) activity and malondialdehyde (MDA) content in three tissues (head, muscle and viscera) of zebrafish. The results showed that a high concentration of Tb was more toxic to zebrafish. The 48 h and 96 h median lethal concentrations (LC50) of Tb to zebrafish were 81.39 mg/L and 79.03 mg/L, respectively. The safe concentration (CS) was 7.90 mg/L. Terbium (Ⅲ) ion (Tb3+) had different effects on CAT activity in various parts of zebrafish. CAT activity decreased gradually with the increase of Tb concentration. With increased exposure time in muscle and viscera, CAT activity was initially induced and then significantly inhibited, while it did not recover in viscera during the purification period in the 40mg/L group. Under Tb stress, the MDA content in viscera of zebrafish showed repeated induction-inhibition changes, while MDA content in muscle exhibited an obvious induction effect during stress, peaking 57.13% on the 14th day after exposure. The visceral MDA content of zebrafish treated with 40.0 mg/L concentration was still significantly induced at the purification phase, with the highest induction rate of 28.99%. The study revealed the acute toxicity and oxidative stress toxicity of Tb to zebrafish and provided a reference for preventing and reducing the toxicity of rare earth ions to aquatic organisms.
[1] |
HEIN F J, AMBROSE W A, HACKLEY P, et al. Unconventional energy resources: 2017 review[J]. Natural Resources Research, 2019, 28(4): 1661-1751.
|
[2] |
钟灵强, 汪志刚, 陈荣春, 等. 稀土在汽车用先进高强钢中的研究现状[J]. 有色金属科学与工程, 2020, 11(6): 114-123.
|
[3] |
王玉香, 赖华生, 文小强, 等. 氟化物体系熔盐电解制备YNi合金[J]. 有色金属科学与工程, 2021, 12(1): 126-130.
|
[4] |
GU Y Y, GAO Y P, GUO H H, et al. First attempt to assess ecotoxicological risk of fifteen rare earth elements and their mixtures in sediments with diffusive gradients in thin films[J]. Water Research, 2020, 185: 116254.
|
[5] |
WANG X N, GU Y G, WANG Z H. Rare earth elements in different trophic level marine wild fish species[J]. Environmental Pollution, 2022, 292: 118346.
|
[6] |
BAU M, DULSKI P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 245-255.
|
[7] |
CALABRESE E J. Hormesis is central to toxicology, pharmacology and risk assessment[J]. Human & Experimental Toxicology, 2010, 29(4): 249-261.
|
[8] |
PAGANO G, GUIDA M, TOMMASI F, et al. Health effects and toxicity mechanisms of rare earth elements-knowledge gaps and research prospects[J]. Ecotoxicology and Environmental Safety, 2015, 115: 40-48.
|
[9] |
王慧敏, 宁周神, 徐鸿涛, 等. 固定化芽孢对铽离子的吸附特性[J]. 有色金属科学与工程, 2022, 13(5): 155-164.
|
[10] |
ABHIPSA B, FALGUNI P, PATI SAMAR G, et al. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2021, 241: 108971.
|
[11] |
HUANG P, LI J, ZHANG S, et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage[J]. Environment Toxicology and Pharmacology, 2011, 31(1): 25-32.
|
[12] |
FREITAS R, COSTA S, CARDOSO C E D, et al. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis[J]. Chemosphere, 2020, 244(C): 125457.
|
[13] |
ZHAO Y B, LIANG J H, MENG H Y, et al. Rare earth elements lanthanum and praseodymium adversely affect neural and cardiovascular development in zebrafish (danio rerio)[J]. Environmental Science & Technology, 2021, 55(2): 1155-1166.
|
[14] |
HANANA H, AGRAWAL P, ANDRÉ C, et al. Comparative study of the effects of gadolinium chloride and gadolinium-based magnetic resonance imaging contrast agent on freshwater mussel, dreissena polymorpha[J]. Chemosphere, 2017, 181: 197-207.
|
[15] |
MOREIRA A, HENRIQUES B, LEITE C, et al. Potential impacts of lanthanum and yttrium through embryotoxicity assays with crassostrea gigas[J]. Ecological Indicators, 2020, 108: 105687.
|
[16] |
DONG W, LI S, CAMILLERI E, et al. Accumulation and release of rare earth ions by spores of bacillus species and the location of these ions in spores[J]. Applied and Environmental Microbiology, 2019, 85(17): e00956-19.
|
[17] |
DONG W, WANG H, NING Z, et al. Bioadsorption of terbium(iii) by spores of bacillus subtilis[J]. Minerals, 2022, 12(7):866-879.
|
[18] |
中华人民共和国国家质量监督检验检疫总局. 水质物质对淡水鱼(斑马鱼)急性毒性测定方法[D]. 北京: 中国标准出版社, 1991.
|
[19] |
张云, 刘国栋, 欧峰, 等. 氯化镧对湖北钉螺的急性毒性研究[J]. 科技视界, 2014, 88(1): 19, 52.
|
[20] |
国家环境保护局. 环境监测技术规范.第四册,生物监测(水环境)部分[M]. 北京; 国家环境保护局, 1986.
|
[21] |
HUANG Z H, GAO N, ZHANG S Y, et al. Investigating the toxically homogenous effects of three lanthanides on zebrafish[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2022, 253: 109251.
|
[22] |
华东. 镧对稀有鮈鲫急性、亚慢性及生理遗传毒性研究[D]. 武汉: 武汉轻工大学, 2017.
|
[23] |
邱逸忱. 氯化铈对稀有鮈鲫急性、亚慢性及慢性毒性研究[D]. 武汉: 武汉轻工大学, 2020.
|
[24] |
FIGUEIREDO C, GRILO T F, LOPES C, et al. Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (anguilla anguilla)[J]. Chemosphere, 2018, 206: 414-423.
|
[25] |
张贵生, 吴红松, 朱道玉, 等. 邻苯二甲酸二乙酯对鲤鱼鳃及消化道黏液细胞的影响[J]. 河北大学学报(自然科学版), 2013, 33(5): 524-529.
|
[26] |
HUA D, WANG J W, YU D H, et al. Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (gobiocypris rarus)[J]. Ecotoxicology, 2017, 26(9): 1207-1215.
|
[27] |
GRAVATO C, GUIMARAES L, SANTOS J, et al. Comparative study about the effects of pollution on glass and yellow eels (anguilla anguilla) from the estuaries of minho, lima and douro rivers (nw portugal)[J]. Ecotoxicology and Environmental Safety, 2010, 73(4): 524-533.
|
[28] |
吉贵祥, 石利利, 刘济宁, 等. BDE-47对斑马鱼胚胎-幼鱼的急性毒性及氧化应激作用[J]. 生态毒理学报, 2013, 8(5): 731-736.
|
[29] |
胡勤海, 胡志强, 叶兆杰. 稀土元素镧在草鱼体中的分布与积累[J]. 农业环境保护, 1996(5): 218-220, 241.
|
[30] |
KANG S, GUO C, XUE C Y, et al. Toxic effects of two representative rare earth elements (La and Gd) on danio rerio based on transcriptome analysis[J]. Toxics, 2022, 10(9): 519-627.
|
[31] |
张银杰, 张洪昌, 凌思源, 等. 壬基酚对斑马鱼不同组织中抗氧化酶活力的影响[J]. 生态毒理学报, 2022, 17(2): 362-371.
|
[32] |
郭红岩, 陈亮. 低浓度镱暴露对鲫鱼肝脏多种酶活性的影响[J]. 南京大学学报(自然科学版), 2001, 37(6): 665-670.
|
[33] |
卢然, 倪嘉缵. 稀土对肝脏作用的机制[J]. 中国稀土学报, 2002, 20(3): 193-198.
|
[34] |
NAGARANI N, DEVI V J, KUMARAGURU A K. Mercuric chloride induced proteotoxicity and structural destabilization in marine fish (therapon jarbua)[J]. Toxicological and Environmental Chemistry, 2011, 93(2): 296-306.
|
[35] |
郭婷, 马园园, 田鹏, 等. 铬暴露对草鱼的氧化损伤及抗氧化能力的影响[J]. 安徽农业科学, 2012, 40(28): 13832-13834.
|
[36] |
刘占才, 牛景彦, 郭彦玲, 等. 汞暴露对草鱼氧化损伤及抗氧化能力的影响[J]. 浙江农业学报, 2016, 28(7): 1148-1155.
|
[37] |
黄志斐, 张喆, 马胜伟, 等. BDE209 胁迫对翡翠贻贝(perna viridis) SOD、MDA 和 GSH 的影响[J]. 农业环境科学学报, 2012, 31(6): 1053-1059.
|
[38] |
赵巧雅, 孙雪婧, 王玲玲, 等. 铜对斑马鱼鳃的损伤及其作用机制[J]. 解剖学报, 2018, 49(3): 367-373.
|
[39] |
单丹, 钟欢, 郭忠宝, 等. 重金属铜暴露对吉富罗非鱼组织残留及抗氧化酶活性的影响[J]. 南方农业学报, 2016, 47(10): 1784-1789.
|
[40] |
岳鑫, 杨爱江, 徐鹏, 等. 锑胁迫对斑马鱼酶活性的影响研究[J]. 生物技术通报, 2019, 35(6): 107-113.
|
[1] | MAO Linghan, YU Xinyang, WEI Xin'an, XIE Honghui, CHEN Shuhua. Application and mechanism of organosilicon collector TAS550 for desilication and purification of magnetite by reverse flotation[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 285-292. DOI: 10.13264/j.cnki.ysjskx.2024.02.015 |
[2] | LAI Fulin, WANG Yuqin, MA Quanxin, ZHOU Lingfei, YANG Mengqian, ZHONG Shengwen, Dmytro Sydorov. Preoxidation of Ni0.8Co0.17Al0.03(OH)2 with LiClO4 to improve cycle stability of lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 57-66. DOI: 10.13264/j.cnki.ysjskx.2023.01.008 |
[3] | LU Liuxian, WANG Junfeng, LIN Jin, CHEN Yunnen, QIU Tingsheng. Study on the life cycle evaluation of the controlled enrichment process of scattered metals in the solid waste of multisource nonferrous smelting solid waste—taking tellurium enrichment as an example[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 137-144. DOI: 10.13264/j.cnki.ysjskx.2022.03.017 |
[4] | YANG Qian, JIN Huixin, YIN Qiannan, XIAO Yuandan, WANG Shangjiefu. Microwave roasting desulfurization pretreatment of high-sulfur bauxite and high-pressure dissolution performance of roasted ore[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 39-45. DOI: 10.13264/j.cnki.ysjskx.2021.05.005 |
[5] | CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008 |
[6] | HE Cong, JIN Jiefang, ZHOU Xuejin, CHENG Yun, CHANG Xiaoxu, YUAN Wei. Damage constitutive model of rock subjected to coupled static loadings and cyclic impacts[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 114-120. DOI: 10.13264/j.cnki.ysjskx.2016.04.020 |
[7] | WANG Sheng, ZHANG Shengquan. Study on ammonia leaching process of alkali leachingresidue of copper smelting dust[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 20-23. DOI: 10.13264/j.cnki.ysjskx.2015.06.004 |
[8] | LI Jun, WU Si-ping. The New Closed Cycle Process for Producing Tungsten Carbide Powder[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 159-160. |
[9] | QIN Guo-hong. On the Development of Alumina's Sintered Silicon Technology of a Company[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 126-129, 143. |
[10] | LI Xian-ming, HUANC Li-ping. Thinkings of Developing Cycle Economy in Jiangxi Nonferrous Metals lndustry[J]. Nonferrous Metals Science and Engineering, 2005, 19(2): 3-5. |