Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LU Liuxian, WANG Junfeng, LIN Jin, CHEN Yunnen, QIU Tingsheng. Study on the life cycle evaluation of the controlled enrichment process of scattered metals in the solid waste of multisource nonferrous smelting solid waste—taking tellurium enrichment as an example[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 137-144. DOI: 10.13264/j.cnki.ysjskx.2022.03.017
Citation: LU Liuxian, WANG Junfeng, LIN Jin, CHEN Yunnen, QIU Tingsheng. Study on the life cycle evaluation of the controlled enrichment process of scattered metals in the solid waste of multisource nonferrous smelting solid waste—taking tellurium enrichment as an example[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 137-144. DOI: 10.13264/j.cnki.ysjskx.2022.03.017

Study on the life cycle evaluation of the controlled enrichment process of scattered metals in the solid waste of multisource nonferrous smelting solid waste—taking tellurium enrichment as an example

More Information
  • Received Date: September 14, 2021
  • Revised Date: March 07, 2022
  • Available Online: July 15, 2022
  • In order to study the resource consumption and environmental impact of the controllable enrichment process of scattered metals in non-ferrous smelting solid wastes such as leaching residue, black copper mud and copper arsenic residue generated from various non-ferrous metal smelting processes, life cycle assessment (LCA) was used to evaluate the environmental load of the process. The corresponding LCA model was established on eFootprint, and the research scope, inventory data and environmental impact results were analyzed. The results show that the process has a great impact on primary energy consumption, water consumption, global warming potential, acidification and ecotoxicity. Enrichment of 1.46 kg tellurium powder from 1.00 tons of non-ferrous smelting solid waste consumes 8 089.53 MJ of primary energy and 11 645.43 kg of water resources, emits 803.45 kg of greenhouse gases and produces 5.10 kg of acidic substances. The ecotoxicity index value was 2.98. Combined with the process characteristics, through sensitivity analysis of LCA results and inventory data, a green improvement scheme is provided for the whole production process.
  • [1]
    朱佳俊, 黄凯. 有色金属冶炼过程中主金属价态变化规律[J]. 有色金属科学与工程, 2021, 12(5): 46-54. doi: 10.13264/j.cnki.ysjskx.2021.05.006
    [2]
    LIU J L, YAO J, LU C, et al. Microbial activity and biodiversity responding to contamination of metal(loid) in heterogeneous nonferrous mining and smelting areas[J]. Chemosphere, 2019, 226: 659-667. doi: 10.1016/j.chemosphere.2019.03.051
    [3]
    WANG J, BAO Y H, MA R, et al. Gallium recovery from aluminum smelting slag via a novel combined process of bioleaching and chemical methods[J]. Hydrometallurgy, 2018, 177: 140-145. doi: 10.1016/j.hydromet.2018.03.009
    [4]
    ZHANG L G, XU Z M. A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes[J]. Journal of Cleaner Production, 2018, 202: 1001-1025. doi: 10.1016/j.jclepro.2018.08.073
    [5]
    蔡加武, 张兴勇, 刘鹏, 等. 含稀散金属有色固废协同冶炼渣型研究现状[J]. 有色冶金设计与研究, 2020, 41(6): 15-18. doi: 10.3969/j.issn.1004-4345.2020.06.005
    [6]
    杨占红, 王健, 张保留, 等. 资源循环利用产业发展路径研究[J]. 生态经济, 2020, 36(12): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202012012.htm
    [7]
    周宏春, 管永林. 生态经济: 新时代生态文明建设的基础与支撑[J]. 生态经济, 2020, 36(9): 13-24. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202009005.htm
    [8]
    闵小波, 柴立元, 柯勇, 等. 我国有色冶炼固体废物处理相关技术及政策建议[J]. 环境保护, 2017, 45(20): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201720011.htm
    [9]
    WANG G C. The Utilization of slag in civil infrastructure construction[M]. England: Woodhead Publishing, 2016: 35-61.
    [10]
    LIU W F, JIA R, SUN B Q, et al. A novel process for extracting tellurium from the calcine of copper anode slime via continuous enrichment[J]. Journal of Cleaner Production, 2020, 264: 121637. doi: 10.1016/j.jclepro.2020.121637
    [11]
    刘鹏, 张兴勇, 蔡加武. 稀散金属硒、碲的火法回收工艺研究进展[J]. 有色冶金设计与研究, 2020, 41(4): 19-21. doi: 10.3969/j.issn.1004-4345.2020.04.006
    [12]
    LIU G, WU Y, TANG A, et al. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review[J]. Hydrometallurgy, 2020, 197: 105460. doi: 10.1016/j.hydromet.2020.105460
    [13]
    BEN-ALON L, LOFTNESS V, HARRIES K A, et al. Life cycle assessment (LCA) of natural vs conventional building assemblies[J]. Renewable and Sustainable Energy Reviews, 2021, 1 44: 110951.
    [14]
    SUSKI P, SPECK M, LIEDTKE C. Promoting sustainable consumption with LCA-A social practice based perspective[J]. Journal of Cleaner Production, 2021, 283: 125234. doi: 10.1016/j.jclepro.2020.125234
    [15]
    ZHANG W B, LI Z H, DONG S C, et al. Analyzing the environmental impact of copper-based mixed waste recycling-a LCA case study in China[J]. Journal of Cleaner Production, 2021, 284: 125256. doi: 10.1016/j.jclepro.2020.125256
    [16]
    CHRISTENSEN T H, DAMGAARD A, LEVIS J, et al. Application of LCA modelling in integrated waste management[J]. Waste Management, 2020, 118: 313-322. doi: 10.1016/j.wasman.2020.08.034
    [17]
    MUTERI V, CELLURAE M, CURTO D, et al. Review on life cycle assessment of solar photovoltaic panels[J]. Energies 2020, 13(1): 252-289. doi: 10.3390/en13010252
    [18]
    HOSSAIN M U, POO C S, LO I M C, et al. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA[J]. Resources, Conservation and Recycling, 2016, 109: 67-77. doi: 10.1016/j.resconrec.2016.02.009
    [19]
    黄娜, 王洪涛, 范辞冬, 等. 基于不确定度和敏感度分析的LCA数据质量评估与控制方法[J]. 环境科学学报, 2012, 32(6): 1529-1536. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201206036.htm
    [20]
    FERRARI A M, VOLPI L, SETTEMBRE-BLUNDO D, et al. Dynamic life cycle assessment (LCA) integrating life cycle inventory (LCI) and Enterprise resource planning (ERP) in an industry 4.0 environment[J]. Journal of Cleaner Production, 2021, 286: 125314. doi: 10.1016/j.jclepro.2020.125314
    [21]
    肖鹏, 王红军, 叶逢春, 等. 基于METSIM的硒碲协同熔炼工艺流程模拟计算[J]. 有色金属(冶炼部分), 2020(11): 55-59. doi: 10.3969/j.issn.1007-7545.2020.11.010
    [22]
    GUO X, YAO Y, ZHAO H L, et al. Environmental impacts of functional fillers in polylactide (PLA)-based bottles using life cycle assessment methodology[J]. Science of the Total Environment, 2021, 788: 147852. doi: 10.1016/j.scitotenv.2021.147852
    [23]
    LA ROSA A D, GRECO S, TOSTO C, et al. LCA and LCC of a chemical recycling process of waste CF-thermoset composites for the production of novel CF-thermoplastic composites. Open loop and closed loop scenarios[J]. Journal of Cleaner Production, 2021, 304: 127158. doi: 10.1016/j.jclepro.2021.127158
  • Related Articles

    [1]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [2]LIN Jin, CHEN Yunnen, LU Liuxian, LIU Jun, WANG Junfeng, QIU Tingsheng. Environmental benefit evaluation of copper tailings resource utilization based on LCA[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 106-112, 121. DOI: 10.13264/j.cnki.ysjskx.2021.03.014
    [3]TAO Meixia, CHEN Ming, YANG Quan, HU Lanwen, YANG Tao. Assessment in soil heavy metal pollution and safety pre-warning based on GIS[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 92-97. DOI: 10.13264/j.cnki.ysjskx.2017.06.015
    [4]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]GUO Xueyi, YAN Kang, TIAN Qinghua. Prospect for Big Data Applications in Urban Mining[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 94-99. DOI: 10.13264/j.cnki.ysjskx.2016.06.0016
    [7]WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54.
    [8]SUN Bo, WANG Hai-ning. Evaluation of Life Cycle Assessment (LCA) and Its Application on Non-ferrous Metals Industry[J]. Nonferrous Metals Science and Engineering, 2010, 1(02): 77-81.
    [9]YANG Feng, YIU Hong, XIONG Yi-jun. On the Uncertainty of Tungsten Value in Ds-ferroalloy by ICP-MS[J]. Nonferrous Metals Science and Engineering, 2009, 23(1): 35-37.
    [10]XU Ling, KANG Ling-ling. Discussion on the Enterprise Life Cycle and the Managers' Concept Skills[J]. Nonferrous Metals Science and Engineering, 2004, 18(4): 6-8.

Catalog

    Article Metrics

    Article views (193) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return