Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YANG Qian, JIN Huixin, YIN Qiannan, XIAO Yuandan, WANG Shangjiefu. Microwave roasting desulfurization pretreatment of high-sulfur bauxite and high-pressure dissolution performance of roasted ore[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 39-45. DOI: 10.13264/j.cnki.ysjskx.2021.05.005
Citation: YANG Qian, JIN Huixin, YIN Qiannan, XIAO Yuandan, WANG Shangjiefu. Microwave roasting desulfurization pretreatment of high-sulfur bauxite and high-pressure dissolution performance of roasted ore[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 39-45. DOI: 10.13264/j.cnki.ysjskx.2021.05.005

Microwave roasting desulfurization pretreatment of high-sulfur bauxite and high-pressure dissolution performance of roasted ore

More Information
  • Received Date: March 16, 2021
  • Published Date: October 30, 2021
  • In this paper, microwave roasting method was used to study the desulfurization effect of high-sulfur bauxite, and the roasted ores after roasting and desulfurization were dissolved by Bayer method, and the influence of microwave roasting conditions on the dissolution rate of alumina was studied. The results showed that as for microwave roasting desulfurization of high-sulfur bauxite, its roasting temperature had a more significant effect on the desulfurization rate than the roasting time. When the roasting temperature increased from 100 ℃ to 600 ℃, the desulfurization rate could increase by about 30% on average. When the time was extended from 2 min to 20 min, the desulfurization rate only increased by about 12% on average. Roasting at 600 ℃ for 20 min could remove the total sulfur content of bauxite from 3.875% to 0.223 5%, and the desulfurization rate reached 95.11%. At the same time, the microwave roasting temperature had a significant effect on the dissolution rate of alumina. As the microwave roasting temperature increased, the relative dissolution rate of alumina tended to increase first and then decrease. When the microwave roasting temperature was 400 ℃, the relative dissolution rate of aluminum in the roasted ore reached the maximum up to 94.77%; when the temperature was higher than 400 ℃, a large amount of corundum (Al2O3) phase would appear in the roasted ore, which was the main factor leading to the decrease of the relative dissolution rate of alumina.
  • [1]
    李寿朋, 王瑞, 郭玉婷, 等. 中等嗜热菌群协同脱除高硫铝土矿中的硫[J]. 中国有色金属学报, 2016, 26(11): 2393-2402. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201611016.htm
    [2]
    杨林, 梁溢强, 简胜. 新型活化剂在高硫铝土矿浮选脱硫中的应用研究[J]. 矿产保护与利用, 2018(2): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201802017.htm
    [3]
    DONG L, LYU G, ZHANG T A, et al. Roasting pretreatment-low temperature digestion method for comprehensive utilization of high-sulfur Bauxite[C]//TMS Annual Meeting & Exhibition. Springer, Cham, 2018.
    [4]
    LIU W C, YANG J H, BO X. Review on treatment and utilization of bauxite residues in China[J]. International Journal of Mineral Processing, 2009, 93(3): 220-231. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=45219695&site=ehost-live
    [5]
    宋超, 彭志宏, 魏欣欣, 等. 黄铁矿在拜耳法溶出过程中的反应行为研究[J]. 有色金属科学与工程, 2011, 2(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201105002.htm
    [6]
    谢巧玲. 高硫铝土矿的溶出行为和反浮选脱硫的研究[D]. 长沙: 中南大学, 2009.
    [7]
    谭杰. 铝酸钠溶液中S~(2-)的铁酸钠沉淀脱除[D]. 长沙: 中南大学, 2014.
    [8]
    杨重愚. 氧化铝生产工艺学[M]. 北京: 冶金工业出版社, 1982: 100-102.
    [9]
    WANG X M, ZHANG T A. Flotation desulfurization of high-sulfur bauxite with ethyl thio carbamate as collector[J]. Advanced Materials Research, 2011, 1268: 1515-1519. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.980.3808&rep=rep1&type=pdf
    [10]
    HUANG Y, DANG D, HAN G, et al. Research on the desulfurization of high sulfur bauxite[J]. TMS Annual Meeting & Exhibition, 2018. doi: 10.1007/978-3-319-72284-9_24
    [11]
    KING M. Recent developments in microwave processing of minerals[J]. International Materials Reviews, 2006, 51(1): 1-12. doi: 10.1179/174328006X79472
    [12]
    USLU T, ATALAY Ü. Microwave heating of coal for enhanced magnetic removal of pyrite[J]. Fuel Processing Technology, 2004, 85(1) : 21-29. doi: 10.1016/S0378-3820(03)00094-8
    [13]
    MA S J, LUO W J, MO W, et al. Removal of arsenic and sulfur from a refractory gold concentrate by microwave heating[J]. Minerals Engineering, 2009, 23(1): 61-63. http://www.onacademic.com/detail/journal_1000035071426410_d535.html
    [14]
    THOMS T. Developments for the precombustion removal of inorganic sulfur from coal[J]. Fuel Processing Technology, 1995, 43(2): 123-128. doi: 10.1016/0378-3820(95)00008-U
    [15]
    LIU C P, XU Y S, HUA Y X. Application of Microwave Radiation to Extractive Metallurgy[J]. Journal of Materials Science & Technology, 1990(2): 121-124. http://www.cqvip.com/QK/84252X/199002/4001628745.html
    [16]
    张念炳. 高硫铝土矿脱硫机理及微波预培烧脱硫研究[D]. 重庆: 重庆大学, 2011.
    [17]
    QI Y Q, WEN L, CHEN H Q, et al. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel, 2003, 83(6): 705-712.
    [18]
    吕国志, 张廷安, 鲍丽, 等. 高硫铝土矿的焙烧预处理及焙烧矿的溶出性能[J]. 中国有色金属学报, 2009, 19(9): 1684-1689. doi: 10.3321/j.issn:1004-0609.2009.09.024
    [19]
    张念炳, 白晨光, 邓青宇. 高硫铝土矿微波焙烧预处理[J]. 重庆大学学报, 2012, 35(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201201017.htm
    [20]
    黎氏琼春, 巨少华, 彭金辉, 等. 一水硬铝石矿-氢氧化钠-氢氧化钙体系在微波场中的物相演变[J]. 中南大学学报(自然科学版), 2017, 48(12): 3152-3159. doi: 10.11817/j.issn.1672-7207.2017.12.003
    [21]
    金会心, 吴复忠, 李军旗, 等. 高硫铝土矿微波焙烧脱除黄铁矿硫[J]. 中南大学学报(自然科学版), 2020, 51(10): 2707-2718. doi: 10.11817/j.issn.1672-7207.2020.10.003
  • Related Articles

    [1]SONG Huahao, JIN Huixin, WANG Zhengxing, LEI Ershuai. Study on preparation of ultrafine alumina by aluminum hydroxide under ultrasonic field[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 342-350. DOI: 10.13264/j.cnki.ysjskx.2024.03.004
    [2]RONG Yuhang, ZHU Xiangying, CHEN Junxiu, WU Changjun, TU Hao, WANG Jianhua, SU Xuping. Study on alumina precipitation behavior in Ti-Al-Fe-O melts[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 34-42. DOI: 10.13264/j.cnki.ysjskx.2024.01.005
    [3]JIANG Zhengshuai, XIA Feilong, ZHANG Shanshan, ZHANG Qiang, ZHANG Min. Study on efficient desulfurization and desilication process of low-grade bauxite[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 26-34. DOI: 10.13264/j.cnki.ysjskx.2022.03.004
    [4]YIN Qiannan, JIN Huixin, XIAO Yuandan, GUO Yuliang. Preparation of high purity aluminum hydroxide by dissolving sodium aluminate solution with isopropanol[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 33-41. DOI: 10.13264/j.cnki.ysjskx.2021.04.005
    [5]XIONG Houdong, CHEN Yang, WANG Lei, TAN Qiulan, ZHANG Lili, ZHONG Zhenchen. Microwave absorbing performance of FeSiCr/GO nanocomposites[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 44-51. DOI: 10.13264/j.cnki.ysjskx.2020.03.006
    [6]SHI Huixian, SHI Chunyang, YANG Yagang, QU Yasong, ZHANG Lei, YU Xiaohua, XIE Gang. Study on the process of preparing high purity alumina from aluminum air battery electrolyte[J]. Nonferrous Metals Science and Engineering, 2020, 11(1): 8-14. DOI: 10.13264/j.cnki.ysjskx.2020.01.002
    [7]HAN Xiuxiu, ZHANG Tingan, LYU Guozhi, PAN Xijuan. A comparative study of alumina prepared from aluminum chloride solution by electrotransformation method and by sodium hydroxide titration method[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 16-21. DOI: 10.13264/j.cnki.ysjskx.2019.04.003
    [8]QIN Guo-hong. On the Development of Alumina's Sintered Silicon Technology of a Company[J]. Nonferrous Metals Science and Engineering, 2010, 24(3-4): 126-129, 143.
    [9]ZHANG Qin, CHEN Jin-qing. On Electrochemical Dissolution of Cobalt White Alloy[J]. Nonferrous Metals Science and Engineering, 2008, 22(3): 26-28.
    [10]SHAO Guo-qiang, LI Lv. Mineralizer Effects on Conductivity of Nano-Alumina Aqueous Dispersions[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 23-25.

Catalog

    Article Metrics

    Article views (116) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return