Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
BAO Jianping, GUI Yong, LUO Sihai, WANG Guanshi. Analysis of the steady seepage lines for in-situ leaching mining in a rounded barefoot type mine[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 879-886. DOI: 10.13264/j.cnki.ysjskx.2023.06.016
Citation: BAO Jianping, GUI Yong, LUO Sihai, WANG Guanshi. Analysis of the steady seepage lines for in-situ leaching mining in a rounded barefoot type mine[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 879-886. DOI: 10.13264/j.cnki.ysjskx.2023.06.016

Analysis of the steady seepage lines for in-situ leaching mining in a rounded barefoot type mine

More Information
  • Received Date: September 06, 2022
  • Revised Date: November 06, 2022
  • Available Online: December 28, 2023
  • At present, in-situ leaching mining has some disadvantages of lacking reliable design methods, low comprehensive recovery rate of resources and frequent landslide geological disasters. A spherical bare-foot rare earth mine was selected as the research object, and a simplified axisymmetric model of “liquid injection-liquid collection” was established for in-situ leaching. Based on groundwater dynamics and the Dupuit hypothesis, the mine stable infiltration line equation was derived, and the calculation error of the equation was analyzed. The infiltration line equation was expressed as a piecewise function, where the infiltration line in the liquid injection area was the upper half of the elliptic line, and the infiltration line in the non-liquid injection area was a complex shape composed of parabola and logarithmic curve. The error analysis showed that the calculation error gradually increased along the direction of the flow field, and the values of seepage slope, bedrock slope, liquid injection range and relative permeability coefficient had little effect on the calculation error of the infiltration line equation. The equation has good applicability in the in-situ leaching of the spherical barefoot rare earth mine. It can provide a theoretical basis for the “prediction in advance (design)” of the “liquid injection-liquid collection” infiltration link.
  • [1]
    郑先坤, 冯秀娟, 陈哲, 等. 离子型稀土矿开采环境问题及废弃地修复治理研究进展[J]. 应用化工, 2019,48(3):681-684.
    [2]
    周晓文, 温德新, 罗仙平. 南方离子型稀土矿提取技术研究现状及展望[J]. 有色金属科学与工程, 2012,3(6):81-85.
    [3]
    肖燕飞, 黄小卫, 冯宗玉, 等.离子吸附型稀土矿绿色提取技术研究进展[J]. 稀土, 2015, 36 (3) : 109-115.
    [4]
    王观石, 罗嗣海, 胡世丽, 等. 裸脚式稀土矿山原地浸矿渗流过程及边坡变形[J]. 稀土, 2017, 38(3): 35-46.
    [5]
    王炯辉, 赵彬, 陈道贵, 等.基于AHP的离子型稀土资源采选综合回收影响因素分析与对策[J].矿冶工程, 2016, 36(3): 9-13.
    [6]
    罗仙平, 翁存建, 徐晶, 等. 离子型稀土矿开发技术研究进展及发展方向[J]. 金属矿山, 2014, 43(6): 83-90.
    [7]
    赵彬, 康虔, 佘宗华. 离子型稀土矿增浸促渗技术研究[J]. 矿冶工程, 2018,38(3): 26-29.
    [8]
    卓毓龙, 王晓军, 赵奎, 等. 化学置换过程离子吸附型稀土矿强度弱化机理研究[J]. 稀土, 2017,38(6): 57-63.
    [9]
    卓毓龙, 王晓军, 曹世荣, 等. 渗流作用下稀土矿孔隙结构与强度弱化关系研究[J]. 黄金科学技术, 2017, 25(5): 101-106.
    [10]
    汤洵忠, 李茂楠, 杨殿. 离子型稀土矿原地浸析采场滑坡及其对策[J]. 金属矿山, 2000(7): 6-8.
    [11]
    TIAN J, YIN J Q, CHI R A, et al. Kinetics on leaching rare earth from weathered crust elution-deposited rare earth ores with ammonium sulfate solution[J]. Hydrometallurgy, 2010, 101(3/4): 166-170.
    [12]
    HE Z Y, ZHANG Z Y, YU J X, et al. Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with compound ammonium salt [J]. Hydrometallurgy, 2016, 163: 33-39.
    [13]
    孙园园, 许秋华, 李永绣. 低浓度硫酸铵对离子吸附型稀土的浸取动力学研究[J]. 稀土, 2017 , 38(4): 61-67.
    [14]
    HE Z Y, ZHANG Z Y, YU J X, et al. Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salt[J]. Transactions Nonferrous Metals Society China, 2016, 26:3024-3033.
    [15]
    QIU T S, ZHU D M, WU C Y, et al. Lattice Boltzmann model for simulation on leaching process of weathered elution-deposited rare earth ore[J]. Journal of Rare Earths, 2017, 35(10): 1014-1021.
    [16]
    杨幼明, 王莉, 肖敏, 等. 离子型稀土矿浸出过程主要物质浸出规律研究[J].有色金属科学与工程, 2016, 7(3):125-130.
    [17]
    冯健, 何正艳, 周芳, 等. 某风化壳淋积型稀土矿的渗透性研究[J]. 稀土, 2017, 38 (4): 50-60.
    [18]
    ZHANG Z Y, HE Z Y, ZHOU F, et al. Swelling of clay minerals in ammonium leaching of weathered crust elution-deposited rare earth ores[J]. RARE MET, 2018, 37 (1):72-78.
    [19]
    TIAN J, TANG X K, YIN J Q, et al. Enhanced leachability of a lean weathered crust elution-deposited rare-earth ore: effects of sesbaniagum filter-aid reagent[J]. Metall Mater Transactions B, 2013,44 (5): 1070-1077.
    [20]
    XIAO Y F, LAI F G, HUANG L , et al. Reduction leaching of rare earth from ion-adsorption type rare earths ore : II. Compound leaching [J]. Hydrometal- lurgy, 2017, 173: 1-8.
    [21]
    胡世丽, 洪本根, 罗嗣海, 等. 裸脚式稀土矿山原地浸矿的边坡稳定性分析[J]. 工程地质学报, 2017(1): 110-116.
    [22]
    饶睿, 李明才, 张树标, 等. 离子型稀土原地浸矿采场滑坡特征及防控试验研究[J]. 稀土, 2016(6): 26-31.
    [23]
    池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 2019, 37(2): 129-140.
    [24]
    袁长林. 中国南岭淋积型稀土溶浸采矿正压系统的地质分类与开采技术[J]. 稀土, 2010, 31 (2): 75-79.
    [25]
    桂勇. 离子型稀土原地浸矿注液入渗与溶质运移规律及其应用[D]. 赣州:江西理工大学, 2018.
    [26]
    桂勇, 罗嗣海, 王观石, 等. 原地浸矿单孔注液稳渗流量计算[J]. 哈尔滨工程大学学报, 2018(4): 680-686.
    [27]
    桂勇, 王观石, 赖远明, 等. 原地浸矿单孔注液影响半径的计算模型[J]. 中国有色金属学报, 2018(5): 1050-1058.
    [28]
    郭钟群, 赖远明, 赵奎, 等. 恒定水头条件下离子型稀土单井注液的影响范围[J]. 中国有色金属学报, 2018, 28(9):1918-1927.
    [29]
    陈崇希. 地下水动力学[M]. 5版. 北京:地质出版社, 2011.
    [30]
    毛昶熙. 渗流计算分析与控制[M]. 2版. 北京:中国水利水电出版社, 2003.

Catalog

    Article Metrics

    Article views (82) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return