Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014
Citation: WEN Tanggen, ZHANG Bin, ZHANG Jiawei, LI Mingzhou, YANG Shaohua. Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 706-715. DOI: 10.13264/j.cnki.ysjskx.2023.05.014

Numerical simulation of multiphase flow in 6 kA neodymium electrolytic cell

More Information
  • Received Date: June 28, 2022
  • Revised Date: September 09, 2022
  • Available Online: November 07, 2023
  • The flow field of air bubbles and electrolytes in the rare earth electrolytic cells is of great significance to ion concentration distribution, temperature distribution and the dissolution of oxide particles, and determines the quantity of products. In this paper, a cylindrical neodymium electrolysis cell with an anodic current density of 6 kA was taken as the prototype, and two-dimensional and three-dimensional mathematical models were established, respectively. The ANSYS-FLUENT software was used to solve the models. The results show that the flow process at the anodal gap and outboard of the carbon anode not be simulated by the two-dimensional model, while the three-dimensional model can accurately reflect the flow characteristic in the actual electrolytic cell. A nonuniform polar distance geometric model was built based on the real rare earth electrolyzer and the flow process was also simulated. The results show that the main vortices between the cathode and anode deviate toward the cathode and the bottom of the electrolytic cell with the increase of polar distance. Although the change in velocity is tiny, differences in swirl intensity within the electrolyte will lead to the deviation of rare earth metals. the degree of which increases with the anode distance ratio. The penetration depth of the anode bubble flow decreases with increasing polar distance.
  • [1]
    王旭, 焦芸芬, 廖春发. 非水溶剂电还原制取重稀土金属及合金的研究现状及发展[J]. 有色金属科学与工程, 2018, 9(6): 99-104.
    [2]
    刘航, 张耀, 乔晓辉,等. 熔盐电解法制备低氧低钛稀土金属研究[J]. 稀有金属与硬质合金, 2021, 49(2): 5-8,19.
    [3]
    王海辉, 逄启寿, 郜飘飘. 大电流稀土电解槽三维电场的数值仿真 [J]. 中国稀土学报, 2017, 35(4): 514-519.
    [4]
    LIANG Y, LI Y K, XUE L Y, et al. Extraction of rare earth elements from fluoride molten salt electrolytic slag by mineral phase reconstruction[J]. Journal of Cleaner Production, 2018, 177: 567-572.
    [5]
    杨少华, 谢宝如, 杨凤丽, 等. 铝电解槽阳极气泡行为研究[J]. 有色金属科学与工程, 2013, 4(3): 20-24.
    [6]
    闫光礼, 冯羽生, 徐水太. 镝铁阴极电蚀对稀土电解槽电解特性的影响[J]. 有色金属科学与工程 ,2019, 10(6): 92-96.
    [7]
    LV X J, ZHANG H X, HAN Z X, et al. Numerical simulation of coupled thermo-electrical field for 20 kA new rare earth reduction cell[J]. Transactions of Nonferrous Metals Society China, 2020(30): 1124-1134.
    [8]
    汪金良, 杨宜清. 基于Comsol的稀土熔盐电解槽分析[J]. 有色金属科学与工程, 2016, 7(6): 30-34.
    [9]
    戴志海, 张斌, 彭金鹏, 等. 底吹炼铜熔池液面波动数值模拟[J]. 有色金属科学与工程, 2021, 12(6): 9-16.
    [10]
    ZHAN S Q, JIANG M M, WANG J F, et, al. Improved CFD modeling of full dissolution of alumina particles in aluminum electrolysis cells considering agglomerate formation[J]. Trans Nonferrous Metals Society China, 2021(31): 3579-3590.
    [11]
    刘中兴, 齐素慈. 3kA钕电解槽流场的数值模拟[J]. 稀有金属材料与工程, 2007(2):194-196.
    [12]
    伍永福, 刘中兴, 李姝婷, 等. 稀土熔盐电解槽内多相流动数值模拟[J]. 过程工程学报, 2009, 9(增刊1): 410-414.
    [13]
    刘宇新, 刘中兴, 杨立军. 稀土电解槽气液两相流动数值模拟[J]. 有色金属(冶炼部分), 2011(10): 27-33.
    [14]
    刘钊, 李宗安, 张小伟, 等. 稀土电解槽流场的数值模拟[J]. 中国有色金属学报, 2015, 25(11): 3209-3215.
    [15]
    逄启寿, 忻治霖, 林小程, 等.稀土电解槽电化学三维时变流场数值模拟[J]. 有色金属科学与工程, 2022,13(3):152-158.
    [16]
    伍永福, 鞠阳, 刘中兴, 等. 稀土电解槽流场-电场耦合数值模拟[J]. 稀土, 2015, 36(5): 76-80.
    [17]
    高钰奇, 刘中兴, 李扬磊, 等. 稀土电解过程中氧化钕颗粒在不同工况下运动轨迹分析研究[J]. 中国铸造装备与技术, 2020, 55(6): 37-43.
    [18]
    谭金池, 张斌, 袁富,等. 板坯连铸结晶器三维流场模拟仿真研究[J]. 江西冶金,2020 (40):11-15.
    [19]
    袁启盛,张斌,戴志海,等. 底吹炼铜喷口区多相流动特性数值模拟研究[J]. 世界有色冶金, 2021(2):6-10.
    [20]
    LIU Y T, YANG T Z, CHEN Z, et al. Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace[J]. Transactions of Non-ferrous Metals Society of China, 2020(30): 249-258.
    [21]
    刘庆生, 程华金, 谈成亮, 等. 非均一极距对稀土电解多相流影响的数值模拟及实验验证[J]. 有色金属科学与工程, 2020, 11(5): 59-68.
    [22]
    董云芳, 冯猛, 刘中兴. 稀土电解槽电场对阳极气体气含率分布影响的数值模拟[J]. 稀有金属与硬质合金, 2018, 46(1): 10-13.
    [23]
    刘康毅, 高鹏. 6kA镨钕电解槽不同阴极直径下的电热场耦合模拟[J]. 有色金属工程, 2020, 10(2): 60-65.
  • Related Articles

    [1]GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006
    [2]PENG Jinpeng, ZHAN Jiaxin, ZHANG Bin, WU Yikang, LI Mingzhou. Numerical simulation of multiphase flow in oxygen bottom-blowing copper melting furnance[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 318-328. DOI: 10.13264/j.cnki.ysjskx.2023.03.004
    [3]PANG Qishou, XIN Zhilin, LIN Xiaocheng, GONG Yaoteng, WANG Zhiyang. Numerical simulation of the electrochemical 3D time-varying flow field in a rare earth electrolytic cell[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 152-158. DOI: 10.13264/j.cnki.ysjskx.2022.03.019
    [4]NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004
    [5]LIU Qingsheng, CHENG Huajin, TAN Chengliang, QIU Jianmin, LI Huajie. Numerical simulation and experimental verification of the influence of non-uniform pole pitch to rare earth electrolysis process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 59-68. DOI: 10.13264/j.cnki.ysjskx.2020.05.009
    [6]CHEN Fei, SONG Bo, YANG Zhanbing, LI Zhenxiang. Optimum simulation of velocity field and temperature field of horizontal passage of ISA waste heat boiler[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2016.04.001
    [7]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [8]RAO Yun-zhang, CHEN Hui, XIAO Guang-zhe, CHEN Guo-liang. On the Design of Stope Bottom Structures Based on FLAC 3D Numerical Simulation[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 43-47. DOI: 10.13264/j.cnki.ysjskx.2011.02.009
    [9]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
    [10]QIAO Jun-yu, XU Guo-yuan. Numerical Simulation in Reinforcement for Deep Foundation Pit with Soil Nailing[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 24-24.

Catalog

    Article Metrics

    Article views (94) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return