Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YU Chang-lin, ZHOU Xiao-chun, HU Jiu-biao, FAN Qi-zhe. Thermodynamic Simulation Analysis of the Catalytic Partial Oxidation of Methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 26-32. DOI: 10.13264/j.cnki.ysjskx.2014.02.005
Citation: YU Chang-lin, ZHOU Xiao-chun, HU Jiu-biao, FAN Qi-zhe. Thermodynamic Simulation Analysis of the Catalytic Partial Oxidation of Methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 26-32. DOI: 10.13264/j.cnki.ysjskx.2014.02.005

Thermodynamic Simulation Analysis of the Catalytic Partial Oxidation of Methane

More Information
  • Received Date: November 27, 2013
  • Published Date: April 29, 2014
  • Syngas prepared by catalytic partial oxidation of methane (CPOM) is of importance to increase the application value of the nature gas. The reaction in CPOM is a complex system which involves partial oxidation (main reaction), combustion, reforming reaction, water-gas shift reaction, carbon deposition and so on. The production of syngas from CPOM has been simulated thermodynamically with the advanced process simulator Aspen Plus and HSC Chemistry program. The influences of temperature, pressure, CH4/O2 ratio to the conversion rate of CH4, selectivity to hydrogen and carbon monoxide are discussed. Moreover, the composition of products in thermodynamic equilibrium and carbon deposition reaction are analyzed and discussed. The result of thermodynamic simulation shows that with the increase of reaction temperature and decrease of reaction pressure, the conversion of methane and selectivity to hydrogen and carbon monoxide is on the rise. Quite amount of carbon deposition will be produced in CPOM reaction when the reaction temperature is 300 ℃ and carbon deposition reaches the maximum value at 550 ℃ which will decrease gradually with further increase of reaction temperature. When the reaction temperature is above 900 ℃ , no carbon deposition will be produced.
  • [1]
    余长林, 胡久彪, 杨凯, 等.制备方法对Ni/CeO2-Al2O3催化剂甲烷部分氧化催化性能的影响[J]. 燃料化学学报, 2013,41(6):722-728 http://www.cqvip.com/QK/90650X/201306/46426848.html
    [2]
    Korup O, Goldsmith C F, Weinberg G, et al. Catalytic partial oxidation of methane on platinum investigated by spatial reactor profiles, spatially resolved spectroscopy, and microkinetic modeling[J]. J. Catal., 2013297:1-16 doi: 10.1016/j.jcat.2012.08.022
    [3]
    刘瑞艳, 杨美华, 黄传敬, 等. 介孔 Co-Al2O3 催化剂上甲烷部分氧化制合成气[J].催化学报,201334: 146-151 http://www.cnki.com.cn/Article/CJFDTotal-CHUA201301016.htm
    [4]
    余长林, 胡久彪, 翁维正, 等. Co/Ce0.5Zr0.5O2 催化剂的制备及甲烷部分氧化制合成气[J]. 燃料化学学报, 201240(4): 418-423. http://www.cqvip.com/QK/90650X/201204/41733401.html
    [5]
    余长林, 周晓春, 胡久彪, 等.Co/CexTi1-xO2催化剂的制备及其对甲烷部分氧化反应催化性能[J]. 石油学报:石油加工, 201319 (6): 45-51. http://www.cqvip.com/QK/94167X/201306/48249521.html
    [6]
    Hermes N A, Lansarin M A, Perez O W. Catalytic decomposition of methane over M-Co-Al catalysts (M = Mg, Ni, Zn, Cu)[J]. Catal. Lett., 2011141 (7): 1018-1025. doi: 10.1007/s10562-011-0611-5
    [7]
    纪红兵, 黄莉, 谢俊锋, 等.耦合甲烷部分氧化与二氧化碳重整用镍系催化剂碱金属与碱土金属改性研究[J]. 天然气化工, 200631 (1) : 5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200601001.htm
    [8]
    代小平, 余长春. LaMO3纳米复合钙钛矿氧载体化学循环重整甲烷制合成气[J]. 催化学报, 201132 (8): 1411-1417. http://www.cnki.com.cn/Article/CJFDTotal-CHUA201108021.htm
    [9]
    Hou Z, Yashima T. Supported Co catalysts for methane reforming with CO2[J]. React Kinet Catal. Lett., 200481 (1): 153-159. doi: 10.1023/B:REAC.0000016529.84565.e5
    [10]
    朱自强, 吴有庭. 化工热力学[M]. 3版.北京: 化学工业出版社, 2009.
    [11]
    Soave G. Equilibrium constants from a modified redlich-kwong equation of state[J]. Chem. Eng. Sci., 197227 (6): 1197-1203. doi: 10.1016/0009-2509(72)80096-4
    [12]
    Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 197615 (1): 59-64. http://cn.bing.com/academic/profile?id=2698584524&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Chen W H, Lin M R, Lu J J, et al. Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction[J]. Int. J. Hydrogen Energy, 201035 (21): 11787-11797. doi: 10.1016/j.ijhydene.2010.08.126
    [14]
    Li D, Nakagawa Y, Tomishige K. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Appl. Catal., A, 2011408(1/2): 1-24. http://www.doc88.com/p-9983627030806.html
    [15]
    Haveran V, Dudukovic M P, Lo C S. Conversion of methane and carbon dioxide to higher value products[J]. Ind. Eng. Chem. Res., 201150(12): 7089-7100. doi: 10.1021/ie2000192
    [16]
    张翔宇, 李振花. 甲烷部分氧化制合成气催化剂的研究进展[J]. 化工进展, 200221 (12): 903-907. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200212006.htm
    [17]
    Lanza R, Canu P, Jaras S G. Methane partial oxidation over Pt–Ru catalyst: An investigation on the mechanism[J]. Appl. Catal., A, 2010375 (1): 92-100. doi: 10.1016/j.apcata.2009.12.021
    [18]
    余长林, 周晓春, 翁维正, 等.碱土Sr 对Co/Al2O3催化剂甲烷部分氧化反应的影响[J]. 燃料化学学报, 2012,40(10):1222-1229 http://www.cnki.com.cn/Article/CJFDTotal-RLHX201210015.htm
    [19]
    Yorka P E, Xiao T, Ggreen M L H. Brief overview of the partial oxidation of methane to synthesis gas[J]. Top. Catal., 200322 (3): 345-358.
    [20]
    张军, 赵宁, 肖福魁, 等.NiMgAlO-F催化剂的物化性能及其在甲烷部分氧化制合成气中的应用[J]. 石油化工, 201039 (12): 1319-1325. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201012016.htm
    [21]
    王磊, 曾少华, 张丽娟, 等.La0.75Sr0.25Mn1-xNixO3+δ材料的制备及其催化甲烷部分氧化性能[J]. 催化学报, 200930 (3): 247-253. doi: 10.3321%2fj.issn%3a0253-9837.2009.03.014
    [22]
    孙楠楠, 闻摇霞, 王摇峰, 等.反应条件对Ni-CaO-ZrO2催化剂上CH4-CO2重整反应及积炭的影响[J]. 燃料化学学报, 201240(3): 345-349. doi: 10.3969%2fj.issn.0253-2409.2012.03.015
  • Related Articles

    [1]WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002
    [2]TONG Zhifang, JIA Zhiheng, ZENG Qingpo, XU Congcong. Thermodynamics of the effects of slag compositions on the precipitation of chromium spinel in CaO-MgO-Al2O3-Si2O-Cr2O3-FeO-TiO2 slag system[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 1-10. DOI: 10.13264/j.cnki.ysjskx.2020.03.001
    [3]LIN Qingshan, WANG Jingsong, XUE Qingguo, YUAN Xiaotao, PAN Yuzhu. Research on thermodynamic model for the removal of carbon dioxide in blast furnace gas by hydrate method[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 1-6. DOI: 10.13264/j.cnki.ysjskx.2018.05.001
    [4]XIAO Chao, ZENG Li, LI Yibing, LIU Yezi, WEI Chenggui, HUANG Yongrun. Thermodynamic analysis on removing Cr(III) by phosphate precipitation[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 103-108. DOI: 10.13264/j.cnki.ysjskx.2017.05.015
    [5]DUAN Shengchao, GUO Hanjie, GUO Jing, LU Hao, SHI Xiao, YANG Wensheng, LIU Shuai, YU Mengxi. Thermodynamic calculating of binary alloy melts based on atom-molecule theory[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 7-15. DOI: 10.13264/j.cnki.ysjskx.2017.03.002
    [6]TONG Zhifang, XIAO Cheng, WEI Zhanlong. Molecular dynamics simulation and its application to metallurgical slag[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 15-20. DOI: 10.13264/j.cnki.ysjskx.2016.03.003
    [7]WANG Jin-liang, WANG Jun. Numerical simulation of copper flash continuous smelting furnace structure[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 30-36. DOI: 10.13264/j.cnki.ysjskx.2014.01.006
    [8]CHAI Li-yuan, WANG Hai-tang, YOU Xiang-yu, WANG Qing-wei, SHU Yu-de. Thermodynamics equilibrium of M(Ⅱ)-S-H2O system[J]. Nonferrous Metals Science and Engineering, 2012, 3(5): 8-13. DOI: 10.13264/j.cnki.ysjskx.2012.05.020
    [9]CHEN Xi-rong, CHEN Zao-ming, YU Chang-lin. On the Intrinsic Reaction Kinetics of Selective Oxidation of CO on Ru-La2O3/Al2O3 Catalyst Bed[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 28-31.
    [10]NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38.

Catalog

    Article Metrics

    Article views (88) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return