Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LU Xiongxiong, XIONG Daoling, WEN Mingfu, OUYANG Shaobo, LI Meng, ZHANG Canwen, LIU Yanhong, YANG Jinjuan. Preparation of high-purity ferrous sulfate from NdFeB magnetic material secondary waste slag[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 30-39. DOI: 10.13264/j.cnki.ysjskx.2023.01.005
Citation: LU Xiongxiong, XIONG Daoling, WEN Mingfu, OUYANG Shaobo, LI Meng, ZHANG Canwen, LIU Yanhong, YANG Jinjuan. Preparation of high-purity ferrous sulfate from NdFeB magnetic material secondary waste slag[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 30-39. DOI: 10.13264/j.cnki.ysjskx.2023.01.005

Preparation of high-purity ferrous sulfate from NdFeB magnetic material secondary waste slag

More Information
  • Received Date: December 29, 2021
  • Revised Date: April 30, 2022
  • Available Online: March 13, 2023
  • A large amount of secondary waste residue is produced after rare earth recovery from NdFeB magnetic waste material. In view of the high iron content in waste residue component, the iron extraction from the waste residue was studied, and the iron was recycled in the form of ferrous sulfate products. In the stage of iron extraction by acid leaching, the effects of acid concentration, extraction temperature, leaching time, liquid-solid ratio (acid volume/waste residue mass), and leaching frequency on iron ion leaching were investigated in detail. The optimal acid leaching process parameters obtained by univariate experiments are acid concentration of 6 mol/L, leaching and extracting temperature of 80 ℃, leaching time of 120 min, liquid-solid ratio (mL/g) of 4∶1 and leaching frequency of 2, under which the leaching rate of iron ions is approximately 97.8%. In the reduction stage, the effects of temperature, reaction time and scrap iron excess coefficient on the conversion of Fe3+ to Fe2+ were investigated. The obtained optimal reduction process parameters are reduction temperature of 90 ℃, reaction time of 120 min, and scrap iron excess coefficient of 1.2, under which the conversion rate of Fe3+ to Fe2+ is 97.69%. Finally, the ferrous sulfate product is obtained by concentration, cooling crystallization and recrystallization, with the purity of 99.92%.
  • [1]
    PAVEL C C, THIEL C, DEGRETFS, et al, Role of substitution in mitigating the supply pressure of rare earths in electric road transport application[J]. Sustainable Materials and Technologies, 2017, 12: 62-67. doi: 10.1016/j.susmat.2017.01.003
    [2]
    IMHOLTE D D, NGUYEN R T, VEDANTAM A, et al. An assessment of US rare earth availability for supporting US wind energy growth targets[J]. Energy Policy, 2018, 113: 294-305. doi: 10.1016/j.enpol.2017.11.001
    [3]
    SCHULZER, BUCHERT M. Estimates of global REE recycling potentials from NbFeB magnet material[J]. Resources, Conservation & Recycling, 2016(113): 12-27.
    [4]
    付利雯, 汪金良, 雷翔, 等. 钕铁硼废料资源化回收利用研究进展[J]. 有色金属科学与工程, 2020, 11(1): 92-97. doi: 10.13264/j.cnki.ysjskx.2020.01.015
    [5]
    MAASSHI N, KENJI K, YOHEIK, et al. Extraction of rare earth elements as oxides from a neodymium magnetic sludge[J]. Metallurgical and Materials Transactions B, 2012, 43(3): 468-476. doi: 10.1007/s11663-011-9618-y
    [6]
    POLYAKOV E G, SIBILEV A S. Recycling rare-earth-metal waste using hydrometallurgical methods[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(4): 607-612. doi: 10.1134/S0040579516040266
    [7]
    KATAOKA Y, ONO T, TSUBOTA M, et al. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet[J]. Aip Advance, 2015, 5(11): 117212-117218. doi: 10.1063/1.4935570
    [8]
    HUA C Y, YONG W H, CHAO P Y, et al. pH-controlled selective separation of neodymium (Ⅲ) and samarium (Ⅲ) from transition metals with carboxyl-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3167-3174.
    [9]
    宋宁, 钟晓林, 龚斌, 等. 钕铁硼二次废渣微波加热制备锰锌铁氧体[J]. 稀有金属, 2008, 32(4): 454-458. doi: 10.3969/j.issn.0258-7076.2008.04.012
    [10]
    ITOH M, NISHIYAMA K, SHOGANO F, et al. Recycle of rare earth sintered magnet powder scraps as electromagnetic wave absorbers in gigahertz range[J]. Journal of Alloys and Compounds, 2008, 451(1): 507-509.
    [11]
    陈云锦. 全萃取法回收钕铁硼废渣中的稀土与钴[J]. 中国资源综合利用, 2004, 23(6): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS200406007.htm
    [12]
    吴继平, 邓庚凤, 邓亮亮, 等. 从钕铁硼废料中提取稀土工艺研究[J]. 有色金属科学与工程, 2016, 7(1): 119-124. doi: 10.13264/j.cnki.ysjskx.2016.01.022
    [13]
    江泽佐, 钟春兰, 卢阶主, 等. 钕铁硼回收料盐酸优溶液氯酸钠氧化法除铁[J]. 化工技术与开发, 2018, 47(8): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GXHG201808019.htm
    [14]
    唐杰, 魏成富, 赵导文, 等. 烧结钕铁硼废料中Nd2O3的回收[J]. 稀有金属与硬质合金, 2009, 37(1): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200901004.htm
    [15]
    尹小文, 刘敏, 赖伟鸿, 等. 草酸盐沉淀法回收钕铁硼废料中稀土元素的研究[J]. 稀有金属, 2014, 38(6): 1093-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201406025.htm
    [16]
    刘博文. 废弃钕铁硼磁体中稀土金属的回收工艺研究[D]. 广州: 华南理工大学环境工程系, 2019.
    [17]
    许涛, 李敏, 张春新. 钕铁硼废料中钕、镝及钴的回收[J]. 稀土, 2004, 25(2): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200402010.htm
    [18]
    吴冕. 钕铁硼磁性材料二次废料综合回收利用技术研究[D]. 合肥: 合肥工业大学, 2020.
    [19]
    钟晓林, 宋宁, 龚斌, 等. 用钕铁硼废料回收处理废渣制备Mn-Zn铁氧体微粉的研究[J]. 磁性材料及器件, 2007, 38(6): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-CXCQ200706017.htm
    [20]
    王兴尧, 陈莉. 一种由钕铁硼二次废料制备纳米氧化铁红的方法[P]. 中国: 107055627, 2017-08-18.
    [21]
    KIM Y N, LEE J Y, KIM J H. Improvement of a crystallization process for the purification of vancomycin[J]. Process Biochemistry, 2011, 46(10): 2068-2073.
    [22]
    SHIAV L D, ZENG S L. Separation of the catechol/4-methoxyphenol mixture by stripping crystallization[J]. Journal of Industrial & Engineering Chemistry, 2012, 18(3): 963-968.
    [23]
    NIE Q, WANG J, YIN Q. Effect of solution thermodynamics on the purification of two isomorphic steroids by solution Crystallization[J]. Chemical Engineering Science, 2006, 61(18): 5962-5968.
    [24]
    CORNELL R M, SCHWERTMANN U. The iron oxides: structure, properties, reaction, occurrences and uses, second edition[M]. Weinhein: Wilely-VCH Verlag GmbH&Co. KGaA, 2003.
    [25]
    MANZANO R, ESTEBAN E, PE?ALASA J M, et al. Amendment application in a multi-contaminated mine soil: effects on soil enzymatic activities and ecotoxicological characteristics[J]. Environ Sci Pollut Res, 2014, 21(6): 4539-4550.
    [26]
    GEORGIOU D, ALVAZIDIS A, HATIRAS J, et al. Treatment of cotton textile wastewater using lime and ferrous sulfate[J]. Water Res, 2003, 37(9): 2248-2250.
    [27]
    张克宇, 吴鉴, 周朝金, 等. 结晶法提纯钛白副产硫酸亚铁[J]. 有色金属工程, 2017, 4(2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201702003.htm
  • Related Articles

    [1]LIU Zuowei, XU Zhipeng, GUO Xueyi, TIAN Qinghua. Extraction and purification process of gallium[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 747-755. DOI: 10.13264/j.cnki.ysjskx.2023.06.001
    [2]ZHANG Canwen, LIU Yanhong, XIONG Daoling, OUYANG Shaobo, WEN Mingfu, LU Xiongxiong, YANG Jinjuan, LI Meng. Preparation of ferrous sulfate by dissolution and crystallization of NdFeB secondary waste[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 624-632. DOI: 10.13264/j.cnki.ysjskx.2023.05.004
    [3]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [4]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [5]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [6]LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
    [7]WANG Fa-bo, WANG Lin-sheng, WEN Xiao-qiang. Study on purification of lithium carbonate by carbonation-decomposition method[J]. Nonferrous Metals Science and Engineering, 2013, 4(2): 41-45. DOI: 10.13264/j.cnki.ysjskx.2013.02.006
    [8]YANG Bin, LIU Shan-shan. Preparation process of BaO-ZrO2 (BSZ) nano powder via co-precipitation method[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 8-13. DOI: 10.13264/j.cnki.ysjskx.2013.01.009
    [9]AO Hui-ling. Application of Slon Vertical Ring and Pulsating High Gradient Magnetic Separator in Heishan Ilmenite Processing Plant of Chengde Iron & Steel Company[J]. Nonferrous Metals Science and Engineering, 2005, 19(4): 43-45, 48.
    [10]WU Liang, WU Xin-hua, XU Zu-feng, ZHOU Chun-hua, ZHU Qing-min, LIU Yi-hui. Purification Methods of Ten Single Minerals in Dajishan Tungsten Mine[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 17-21.

Catalog

    Article Metrics

    Article views (201) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return