Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Xiaofeng, KANG Jianxiong. Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 107-112. DOI: 10.13264/j.cnki.ysjskx.2022.02.015
Citation: LIU Xiaofeng, KANG Jianxiong. Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 107-112. DOI: 10.13264/j.cnki.ysjskx.2022.02.015

Ground product size characteristics of mixing ore of andesite porphyrite and granite porphyry

More Information
  • Received Date: July 22, 2021
  • Revised Date: August 26, 2021
  • Available Online: May 09, 2022
  • Since the hardness of different rocks in raw ore varies, a suitable ore mix can help stabilize the crushing effect and thus the beneficiation index. In this paper, the crushing law of two molybdenum ores, andesite and granite porphyry, during the crushing process was studied. The results showed that the average compressive strength of andesite was 238.16 kg/mm2 and that of granite porphyry was 171.65 kg/mm2; the A×b value of andesite was 60.6 and that of granite porphyry was 129.8, and the crushing resistance of andesite was greater than that of granite porphyry. Because the vein minerals of granite porphyry are mainly quartz, the abradability of andesite is higher than that of granite porphyry. When the mass ratio of andesite to granite porphyry was 2:1, the highest content of nascent < 0.074 mm, and the lowest grinding energy consumption could be obtained. Therefore, making full use of the two ores with different hardnesses for ore blending could help stabilize the grinding and improve the utilization efficiency of mineral resources.
  • [1]
    柯丽华, 何新增, 叶义成, 等. 配矿优化技术研究现状及发展趋势[J]. 中国矿业, 2017, 26(1): 77-82. doi: 10.3969/j.issn.1004-4051.2017.01.018
    [2]
    LIU X., LIU C, WANG B, et al. Optimization of iron ore blending in the COREX shaft furnace[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2019, 119(5): 445-452.
    [3]
    SINGH V, BISWAS A. TRIPATHYS K, et al. Smart ore blending methodology for ferromanganese production process[J]. Ironmaking & Steelmaking, 2016, 43(7): 481-487.
    [4]
    ZHANG H, ZUO L, ZHAO Y. Ore blending ratio optimisation for sintering based on iron ore properties and cost[J]. Ironmaking & Steelmaking, 2014, 41(4): 279-285.
    [5]
    WUS L, OLIVEIRA D, DAI Y M, et al. Ore-blending optimization model for sintering process based on characteristics of iron ores[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(3): 217-224. doi: 10.1007/s12613-012-0541-2
    [6]
    何云林, 徐小革, 胡振宇, 等. 某铁矿矿石可选性及配矿试验研究[J]. 现代矿业, 2021, 37(3): 139-142-147. doi: 10.3969/j.issn.1674-6082.2021.03.038
    [7]
    林玉明, 张敏. 某铁矿表外低品位矿与高品位矿配矿试验研究[J]. 矿冶工程, 2011, 31(4): 37-40. doi: 10.3969/j.issn.0253-6099.2011.04.010
    [8]
    韩西鹏, 房启家, 张伟, 等. 金岭铁矿选矿厂配矿生产研究与实践[J]. 现代矿业, 2013, 29(2): 143-144. doi: 10.3969/j.issn.1674-6082.2013.02.054
    [9]
    刘胜卿. 福建某金矿浮选细度及配矿试验研究[J]. 黄金, 2015, 36(10): 70-73. doi: 10.11792/hj201510016
    [10]
    蔡国良. 基于矿堆偏析特征的智能配矿方法的应用[J]. 有色金属(选矿部分), 2020(5): 68-72. doi: 10.3969/j.issn.1671-9492.2020.05.013
    [11]
    金堆城钼矿总体采矿、选矿升级改造项目可行性研究报告顺利通过专家评审[J]. 中国钼业, 2020, 44(5): 60.
    [12]
    任涛, 郑江江. 陕西省华县金堆城钼矿床北露天深部矿体地质特征[J]. 世界有色金属, 2019(19): 252-254. doi: 10.3969/j.issn.1002-5065.2019.19.147
    [13]
    孙涛, 樊会民, 柏千惠. 陕西金堆城钼矿地质—地球化学找矿模式[J]. 矿产勘查, 2018, 9(04): 577-582. doi: 10.3969/j.issn.1674-7801.2018.04.009
    [14]
    张岩. 金堆城钼矿选矿新工艺研究及应用[J]. 中国钼业, 2017, 41(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201703008.htm
    [15]
    李洪英, 杨磊, 柯昌辉, 等. 东秦岭金堆城钼矿床辉绿岩地球化学特征及其地质意义[J]. 矿床地质, 2016 35(5): 1099-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605016.htm
    [16]
    张国艳. 金堆城钼矿南露天岩石性质[J]. 现代矿业, 2016, 32(6): 143-144. doi: 10.3969/j.issn.1674-6082.2016.06.052
    [17]
    王永超, 温晓婵, 王金玮, 等. 金堆城某钼选厂钼精矿高铅问题研究[J]. 现代矿业, 2016, 32(1): 88-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201601032.htm
    [18]
    俞国庆, 王金玮, 彭会清, 等. 提高金堆城钼矿选钼回收率试验研究[J]. 中国钼业, 2014, 38(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201402008.htm
    [19]
    缪平均. 中国钼业之都金堆城发现始末[J]. 陕西档案, 2016(5): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDN201605025.htm
    [20]
    李建伟, 陈世杰, 廖俊红, 等. 陕西省华县金堆城钼矿床地质特征及控矿条件浅析[J]. 甘肃冶金, 2013, 35(5): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE201305029.htm
    [21]
    苏晔, 李光来, 唐傲, 等. 赣中聚源钨矿区花岗斑岩锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素特征及成因探讨[J]. 大地构造与成矿学, 2020, 44(5): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202005012.htm
    [22]
    张建国, 邵拥军, 刘忠法, 等. 河北平泉下金宝花岗斑岩锆石U-Pb年代学、Hf同位素特征及其地质意义[J]. 中国有色金属学报, 2016, 26(1): 137-148. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201601017.htm
    [23]
    雷顺, 康红普, 高富强, 等. 新元煤矿破碎煤体单轴抗压强度快速测定方法研究及应用[J]. 煤炭学报, 2019, 44(11): 3412-3422. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201911014.htm
    [24]
    雷顺, 康红普, 高富强, 等. 破碎煤体点载荷强度测试及单轴抗压强度预测分析[J]. 煤炭科学技术, 2019, 47(4): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201904018.htm
    [25]
    刘刚, 肖福坤, 郭志彪, 等. 点载荷作用下岩石塑性特征及分类[J]. 科学技术与工程, 2018, 18(2): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201802032.htm
    [26]
    杨景超, 甄坤坤, 郑长龙, 等. 不规则煤岩的力学特性试验研究[J]. 煤炭技术, 2017, 36(12): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201712013.htm
    [27]
    杨金林, 周文涛, 马少健, 等. 不同破碎方法下锡石多金属硫化矿磨矿能耗研究[J]. 矿业研究与开发, 2017, 37(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201701015.htm
    [28]
    朱永安, 王漪靖, 王永超. 金堆城钼矿选矿工艺与技术[J]. 中国钼业, 2018, 42(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY201803001.htm
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [3]XIONG Houdong, CHEN Yang, WANG Lei, TAN Qiulan, ZHANG Lili, ZHONG Zhenchen. Microwave absorbing performance of FeSiCr/GO nanocomposites[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 44-51. DOI: 10.13264/j.cnki.ysjskx.2020.03.006
    [4]WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014
    [5]TONG Jiaqi, FANG Xin, WU Zhiqiang, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of Hexagon as a fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 86-91. DOI: 10.13264/j.cnki.ysjskx.2019.03.015
    [6]YE Jingsheng, LIAO Ningning, WU Zhiqiang, LIU Peng, SHI Guiming, WU Caibin. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65-71. DOI: 10.13264/j.cnki.ysjskx.2018.06.011
    [7]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [8]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014
    [9]ZHOU Yichao, ZHAO Ruquan, WU Caibin, SHI Guiming, YAN Faming, ZOU Chunlin. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93-97. DOI: 10.13264/j.cnki.ysjskx.2016.05.017
    [10]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
  • Cited by

    Periodical cited type(1)

    1. 樊文欣,高阳,王鹏飞,陈燕,原霞,彭丽军,付亚波,张忠涛. Ni、Si元素的添加对Cu-7Sn合金组织及力学性能的影响. 有色金属科学与工程. 2025(01): 85-95 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (105) PDF downloads (5) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return