Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Yong, HE Xiaojuan, YU Chenglong, LU Meijuan, LUO Yunkuo, FANG Hansun, HUANG Huajun, GUO Xinchun. Sintering fabrication of magnesia-alumina spinel by secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 42-49. DOI: 10.13264/j.cnki.ysjskx.2021.06.006
Citation: ZHANG Yong, HE Xiaojuan, YU Chenglong, LU Meijuan, LUO Yunkuo, FANG Hansun, HUANG Huajun, GUO Xinchun. Sintering fabrication of magnesia-alumina spinel by secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 42-49. DOI: 10.13264/j.cnki.ysjskx.2021.06.006

Sintering fabrication of magnesia-alumina spinel by secondary aluminum dross

More Information
  • Received Date: June 04, 2021
  • Published Date: December 30, 2021
  • Magnesia-alumina (MA) spinel by sintering secondary alumina ash from the secondary aluminum dross was studied. Thermodynamic analysis showed that MA material can be prepared theoretically by adding MgO to secondary aluminum ash. The results showed that MA spinel could be obtained under the sintering temperature from 1100 to 1500 ℃ when the mass ratio of aluminum dross to MgO was 1∶0.2, respectively. The purity and crystallinity of MA spinel improved significantly. In addition, the compressive strength increased, while apparent porosity decreased with the increasing of sintering temperature. When the sintering temperature was 1400 ℃, the apparent porosity and density of the prepared MA spinel were 9.65% and 2.02 g/cm3. The linear expansivity and the compressive strength were 38% and 89.8 MPa. The compressive strength of MA spinel reached the national standard of People's Republic of China for Magnesium brick and magnesium-aluminum brick (GB/T 2275-2007) (40 MPa), that is, the compressive strength was more than 40 MPa. The results showed that the MA spinel could be synthesis using the secondary aluminum dross with MgO. Therefore this technique provided the possibility of reutilization of the secondary aluminum dross in an environmentally friendly way.
  • [1]
    焦占忠, 张凤炳, 赵刚. 铝灰的资源化利用前景广阔[J]. 资源再生, 2018(10): 34-35. doi: 10.3969/j.issn.1673-7776.2018.10.012
    [2]
    杨航, 申士富, 刘海营, 等. 二次铝灰工艺矿物学特性研究[J]. 有色金属工程, 2019, 9(10): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201910017.htm
    [3]
    杜永立. 中国再生铝产业状况及发展趋势[J]. 有色金属再生与利用, 2004(1): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZS200401014.htm
    [4]
    MANFREDI O, WUTH W, BOHLINGER I. Characterizing the physical and chemical properties of aluminum dross[J]. JOM, 1997, 49(11): 48-51. doi: 10.1007/s11837-997-0012-9
    [5]
    李玲玲, 宋明, 靳强. 铝灰回收利用的研究进展[J]. 无机盐工业, 2018, 50(8): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201808002.htm
    [6]
    TAVANGARIAN F, EMADI R. Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder[J]. Journal of Alloys and Compounds, 2010, 489(2): 600-604. doi: 10.1016/j.jallcom.2009.09.120
    [7]
    BONNEFONT G, FANTOZZI G, TROMBERT S, et al. Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders[J]. Ceramics International, 2012, 38(1): 131-140. doi: 10.1016/j.ceramint.2011.06.045
    [8]
    周玉军, 唐建洪, 唐大才, 等. 镁铝尖晶石质耐火材料的开发与应用[J]. 中国金属通报, 2018(8): 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201808119.htm
    [9]
    MASCHIO R D, FABBRI B, FIORI C. Industrial applications of refractories containing magnesium aluminate spinel[J]. Industrial Ceramics, 1988, 8(3): 121-126.
    [10]
    TSAKIRIDIS P E. Aluminium salt slag characterization and utilization--A review[J]. Journal of Hazardous Materials, 2012, 217-218(6): 1-10. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0304389412003317&originContentFamily=serial&_origin=article&_ts=1428724546&md5=a92f4184a35c976c633a5bfb376afa59
    [11]
    张勇, 郭朝晖, 王硕, 等. 响应曲面法对铝灰中AlN的水解行为[J]. 中国有色金属学报, 2016, 26(4): 919-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201604025.htm
    [12]
    张勇, 郭朝晖, 王硕, 等. 二次铝灰烧结制备钙铝黄长石/镁铝尖晶石复相材料[J]. 中国有色金属学报, 2018, 28(2): 334-349. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201802015.htm
    [13]
    郭海军, 尚宏志, 刘希文, 等. 油墨用氧化铝合成方法[J]. 辽宁化工, 2000, 29(5): 274-275. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG200005008.htm
    [14]
    刘晓红, 刘守信, 邹美琪, 等. 从铝灰中回收铝制备超细氧化铝粉体过程研究[J]. 轻金属, 2009(12): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200912004.htm
    [15]
    李菲, 郭学益, 田庆华. 二次铝灰制备α-Al2O3工艺[J]. 北京科技大学学报, 2012, 34(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201204004.htm
    [16]
    刘大强, 刘桂媛, 何云龙. 铝灰生产棕刚玉的工艺[J]. 哈尔滨理工大学学报, 1996, 1(2): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX199605011.htm
    [17]
    刘瑞琼, 智利彪, 智国彪. 利用铝灰低温冶炼制备棕刚玉[J]. 耐火材料, 2014, 48(2): 145-146. https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201402020.htm
    [18]
    ZHANG Y, GUO Z H, HAN Z Y, et al. Effects of AlN hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12): 2574-2581. http://www.sciencedirect.com/science/article/pii/S1003632618649040
    [19]
    DEAN J A. 兰氏化学手册[M]. 北京: 科学出版社, 2003.
    [20]
    JIA X L, ZHANG H J, YAN Y J, et al. Effect of the citrate sol-gel synthesis on the formation of MgAl2O4 ultrafine powder[J]. Materials Science and Engineering: A, 2004, 379(1/2): 112-118. http://www.sciencedirect.com/science/article/pii/S002554080400025X
    [21]
    ZHANG Y, GUO Z H, HAN Z Y, et al. Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 309-318. http://www.cqvip.com/QK/85313X/201903/7001423242.html
    [22]
    BRAULIO M A L, RIGAUD M, BUHR A, et al. Spinel-containing alumina-based refractory castables[J]. Ceramics International, 2011, 37(6): 1705-1724. http://www.onacademic.com/detail/journal_1000034061655310_adc5.html
    [23]
    BAFROOEI H B, EBADZADEH T. MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling[J]. Ceramics International, 2013, 39(8): 8933-8940. http://www.researchgate.net/profile/Hadi_Barzegar-Bafrooei/publication/276945134_MgAl2O4_nanopowder_synthesis_by_microwave_assisted_high_energy_ball-milling/links/5649634808aef646e6d2354e.pdf
    [24]
    GUO J J, LOU H, ZHAO H, et al. Novel synthesis of high surface area MgAl2O4 spinel as catalyst support[J]. Materials Letters, 2004, 58(12/13): 1920-1923. http://www.onacademic.com/detail/journal_1000035416376410_bb3a.html
    [25]
    ZAWRAH M F, HAMAAD H, MEKY S. Synthesis and characterization of nano MgAl2O4 spinel by co-precipitated method[J]. Ceramics International, 2007, 33(6): 969-978. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0272884206000976&originContentFamily=serial&_origin=article&_ts=1473910724&md5=0625707d2dcd746ad207968938a8cf2a
    [26]
    MINH N V, YANG I S. A Raman study of cation disorder transition temperature of natural MgAl2O4 spinel[J]. Vibrational Spectroscopy, 2004, 35(1/2): 93-96. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0924203103002121&originContentFamily=serial&_origin=article&_ts=1493699634&md5=50d8f6056301e3a2f8864cd1e9f3ba2d
    [27]
    BARPANDA P, BEHERA S K, GUPTA P K, et al. Chemically induced order disorder transition in magnesium aluminium spinel[J]. Journal of the European Ceramic Society, 2006, 26(13): 2603-2609. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0955221905004838&originContentFamily=serial&_origin=article&_ts=1476743954&md5=f7abf44a7d57609237db662490d5736a
  • Related Articles

    [1]GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009
    [2]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]ZHANG Yong, HE Xiaojuan, HE Yuncai, WANG Yuting. Solid-state reaction kinetics and water corrosion resistance of magnesia-alumina spinel by sinering secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 17-24. DOI: 10.13264/j.cnki.ysjskx.2022.06.003
    [5]WANG Jing, LIU Jinping, SUN Ke, WANG Zejin, LENG Xiang. Effect of sintering temperature on the microstructure and properties of graphite/copper matrix composite[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 51-59. DOI: 10.13264/j.cnki.ysjskx.2020.01.009
    [6]QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007
    [7]WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
    [8]XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011
    [9]LIN Shipeng, LIU Jinyan, JI Yanli. Research status of CNTs reinforced aluminum matrix composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2017.02.010
    [10]PENG Guanghuai, DU Xilong, GUO Huabin, QIU Shitao. Effect of sintering temperature on microstructure and properties of Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95 magnet[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 135-139. DOI: 10.13264/j.cnki.ysjskx.2016.02.024
  • Cited by

    Periodical cited type(13)

    1. 林坤,张元波,苏子键,徐佳美,姜涛. 二次铝灰特性及其解毒利用研究进展. 工程科学学报. 2025(03): 538-549 .
    2. 刘颖,张俊杰,沈汉林,张深根. 二次铝灰资源化研究进展. 稀有金属. 2024(02): 277-287 .
    3. 崔维. 二次铝灰产品化方案及评价. 现代化工. 2024(04): 75-78+83 .
    4. 齐涛,刘璇,满苏醇,刘锦川,包文昊. 二次铝灰基多孔莫来石陶瓷制备研究. 非金属矿. 2024(03): 18-21 .
    5. 刘风琴,李劼,陈开斌,李荣斌,谢明壮,刘桂华,赵洪亮. 我国铝工业固危废资源化利用现状及发展趋势. 有色金属(冶炼部分). 2024(09): 1-13 .
    6. 马文青,李灿华,都刚,李家茂,李明晖. 二次铝灰部分替代矾土制备铝酸盐水泥. 有色金属科学与工程. 2024(04): 527-534 . 本站查看
    7. 张勇,宗晨宇,王钰婷,刘欣雨. 二氧化硅对二次铝灰烧结制备镁铝尖晶石材料性能的影响. 中国有色冶金. 2023(03): 57-65 .
    8. 张晓霞,段毅,苏俊. 铝灰的研究现状及进展分析. 云南冶金. 2023(03): 63-67 .
    9. 李振,武奥环,王建城,卢文义,李强强,张联升. 铝电解废渣资源化回收及无害化处理技术研究现状与展望. 金属矿山. 2023(12): 252-262 .
    10. 杨超,冯乃祥. 工业二次铝灰资源化回收利用现状. 现代化工. 2022(06): 73-77 .
    11. 董良民,焦芬,刘维,王焕龙,蒋善钦. 铝灰回收处理研究进展. 中南大学学报(自然科学版). 2022(10): 3791-3801 .
    12. 李颜凌,贺永东,赵亿坤,陈长科,何超. 高纯铝灰碱性焙烧提取铝研究. 矿冶工程. 2022(05): 128-131 .
    13. 张勇,何小娟,何运财,王钰婷. 二次铝灰烧制镁铝尖晶石固相反应动力学及材料耐水蚀性能. 有色金属科学与工程. 2022(06): 17-24 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (164) PDF downloads (12) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return