Citation: | ZHANG Yong, HE Xiaojuan, YU Chenglong, LU Meijuan, LUO Yunkuo, FANG Hansun, HUANG Huajun, GUO Xinchun. Sintering fabrication of magnesia-alumina spinel by secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 42-49. DOI: 10.13264/j.cnki.ysjskx.2021.06.006 |
[1] |
焦占忠, 张凤炳, 赵刚. 铝灰的资源化利用前景广阔[J]. 资源再生, 2018(10): 34-35. doi: 10.3969/j.issn.1673-7776.2018.10.012
|
[2] |
杨航, 申士富, 刘海营, 等. 二次铝灰工艺矿物学特性研究[J]. 有色金属工程, 2019, 9(10): 117-125. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201910017.htm
|
[3] |
杜永立. 中国再生铝产业状况及发展趋势[J]. 有色金属再生与利用, 2004(1): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZS200401014.htm
|
[4] |
MANFREDI O, WUTH W, BOHLINGER I. Characterizing the physical and chemical properties of aluminum dross[J]. JOM, 1997, 49(11): 48-51. doi: 10.1007/s11837-997-0012-9
|
[5] |
李玲玲, 宋明, 靳强. 铝灰回收利用的研究进展[J]. 无机盐工业, 2018, 50(8): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201808002.htm
|
[6] |
TAVANGARIAN F, EMADI R. Synthesis and characterization of pure nanocrystalline magnesium aluminate spinel powder[J]. Journal of Alloys and Compounds, 2010, 489(2): 600-604. doi: 10.1016/j.jallcom.2009.09.120
|
[7] |
BONNEFONT G, FANTOZZI G, TROMBERT S, et al. Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders[J]. Ceramics International, 2012, 38(1): 131-140. doi: 10.1016/j.ceramint.2011.06.045
|
[8] |
周玉军, 唐建洪, 唐大才, 等. 镁铝尖晶石质耐火材料的开发与应用[J]. 中国金属通报, 2018(8): 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201808119.htm
|
[9] |
MASCHIO R D, FABBRI B, FIORI C. Industrial applications of refractories containing magnesium aluminate spinel[J]. Industrial Ceramics, 1988, 8(3): 121-126.
|
[10] |
TSAKIRIDIS P E. Aluminium salt slag characterization and utilization--A review[J]. Journal of Hazardous Materials, 2012, 217-218(6): 1-10. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0304389412003317&originContentFamily=serial&_origin=article&_ts=1428724546&md5=a92f4184a35c976c633a5bfb376afa59
|
[11] |
张勇, 郭朝晖, 王硕, 等. 响应曲面法对铝灰中AlN的水解行为[J]. 中国有色金属学报, 2016, 26(4): 919-928. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201604025.htm
|
[12] |
张勇, 郭朝晖, 王硕, 等. 二次铝灰烧结制备钙铝黄长石/镁铝尖晶石复相材料[J]. 中国有色金属学报, 2018, 28(2): 334-349. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201802015.htm
|
[13] |
郭海军, 尚宏志, 刘希文, 等. 油墨用氧化铝合成方法[J]. 辽宁化工, 2000, 29(5): 274-275. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG200005008.htm
|
[14] |
刘晓红, 刘守信, 邹美琪, 等. 从铝灰中回收铝制备超细氧化铝粉体过程研究[J]. 轻金属, 2009(12): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QJSS200912004.htm
|
[15] |
李菲, 郭学益, 田庆华. 二次铝灰制备α-Al2O3工艺[J]. 北京科技大学学报, 2012, 34(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201204004.htm
|
[16] |
刘大强, 刘桂媛, 何云龙. 铝灰生产棕刚玉的工艺[J]. 哈尔滨理工大学学报, 1996, 1(2): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX199605011.htm
|
[17] |
刘瑞琼, 智利彪, 智国彪. 利用铝灰低温冶炼制备棕刚玉[J]. 耐火材料, 2014, 48(2): 145-146. https://www.cnki.com.cn/Article/CJFDTOTAL-LOCL201402020.htm
|
[18] |
ZHANG Y, GUO Z H, HAN Z Y, et al. Effects of AlN hydrolysis on fractal geometry characteristics of residue from secondary aluminium dross using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12): 2574-2581. http://www.sciencedirect.com/science/article/pii/S1003632618649040
|
[19] |
DEAN J A. 兰氏化学手册[M]. 北京: 科学出版社, 2003.
|
[20] |
JIA X L, ZHANG H J, YAN Y J, et al. Effect of the citrate sol-gel synthesis on the formation of MgAl2O4 ultrafine powder[J]. Materials Science and Engineering: A, 2004, 379(1/2): 112-118. http://www.sciencedirect.com/science/article/pii/S002554080400025X
|
[21] |
ZHANG Y, GUO Z H, HAN Z Y, et al. Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(3): 309-318. http://www.cqvip.com/QK/85313X/201903/7001423242.html
|
[22] |
BRAULIO M A L, RIGAUD M, BUHR A, et al. Spinel-containing alumina-based refractory castables[J]. Ceramics International, 2011, 37(6): 1705-1724. http://www.onacademic.com/detail/journal_1000034061655310_adc5.html
|
[23] |
BAFROOEI H B, EBADZADEH T. MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling[J]. Ceramics International, 2013, 39(8): 8933-8940. http://www.researchgate.net/profile/Hadi_Barzegar-Bafrooei/publication/276945134_MgAl2O4_nanopowder_synthesis_by_microwave_assisted_high_energy_ball-milling/links/5649634808aef646e6d2354e.pdf
|
[24] |
GUO J J, LOU H, ZHAO H, et al. Novel synthesis of high surface area MgAl2O4 spinel as catalyst support[J]. Materials Letters, 2004, 58(12/13): 1920-1923. http://www.onacademic.com/detail/journal_1000035416376410_bb3a.html
|
[25] |
ZAWRAH M F, HAMAAD H, MEKY S. Synthesis and characterization of nano MgAl2O4 spinel by co-precipitated method[J]. Ceramics International, 2007, 33(6): 969-978. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0272884206000976&originContentFamily=serial&_origin=article&_ts=1473910724&md5=0625707d2dcd746ad207968938a8cf2a
|
[26] |
MINH N V, YANG I S. A Raman study of cation disorder transition temperature of natural MgAl2O4 spinel[J]. Vibrational Spectroscopy, 2004, 35(1/2): 93-96. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0924203103002121&originContentFamily=serial&_origin=article&_ts=1493699634&md5=50d8f6056301e3a2f8864cd1e9f3ba2d
|
[27] |
BARPANDA P, BEHERA S K, GUPTA P K, et al. Chemically induced order disorder transition in magnesium aluminium spinel[J]. Journal of the European Ceramic Society, 2006, 26(13): 2603-2609. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0955221905004838&originContentFamily=serial&_origin=article&_ts=1476743954&md5=f7abf44a7d57609237db662490d5736a
|
[1] | GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009 |
[2] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[3] | ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012 |
[4] | ZHANG Yong, HE Xiaojuan, HE Yuncai, WANG Yuting. Solid-state reaction kinetics and water corrosion resistance of magnesia-alumina spinel by sinering secondary aluminum dross[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 17-24. DOI: 10.13264/j.cnki.ysjskx.2022.06.003 |
[5] | WANG Jing, LIU Jinping, SUN Ke, WANG Zejin, LENG Xiang. Effect of sintering temperature on the microstructure and properties of graphite/copper matrix composite[J]. Nonferrous Metals Science and Engineering, 2020, 39(1): 51-59. DOI: 10.13264/j.cnki.ysjskx.2020.01.009 |
[6] | QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007 |
[7] | WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009 |
[8] | XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011 |
[9] | LIN Shipeng, LIU Jinyan, JI Yanli. Research status of CNTs reinforced aluminum matrix composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2017.02.010 |
[10] | PENG Guanghuai, DU Xilong, GUO Huabin, QIU Shitao. Effect of sintering temperature on microstructure and properties of Nd24.38Ce0.52Gd6.65Febal.TM1.76B0.95 magnet[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 135-139. DOI: 10.13264/j.cnki.ysjskx.2016.02.024 |
1. |
林坤,张元波,苏子键,徐佳美,姜涛. 二次铝灰特性及其解毒利用研究进展. 工程科学学报. 2025(03): 538-549 .
![]() | |
2. |
刘颖,张俊杰,沈汉林,张深根. 二次铝灰资源化研究进展. 稀有金属. 2024(02): 277-287 .
![]() | |
3. |
崔维. 二次铝灰产品化方案及评价. 现代化工. 2024(04): 75-78+83 .
![]() | |
4. |
齐涛,刘璇,满苏醇,刘锦川,包文昊. 二次铝灰基多孔莫来石陶瓷制备研究. 非金属矿. 2024(03): 18-21 .
![]() | |
5. |
刘风琴,李劼,陈开斌,李荣斌,谢明壮,刘桂华,赵洪亮. 我国铝工业固危废资源化利用现状及发展趋势. 有色金属(冶炼部分). 2024(09): 1-13 .
![]() | |
6. |
马文青,李灿华,都刚,李家茂,李明晖. 二次铝灰部分替代矾土制备铝酸盐水泥. 有色金属科学与工程. 2024(04): 527-534 .
![]() | |
7. |
张勇,宗晨宇,王钰婷,刘欣雨. 二氧化硅对二次铝灰烧结制备镁铝尖晶石材料性能的影响. 中国有色冶金. 2023(03): 57-65 .
![]() | |
8. |
张晓霞,段毅,苏俊. 铝灰的研究现状及进展分析. 云南冶金. 2023(03): 63-67 .
![]() | |
9. |
李振,武奥环,王建城,卢文义,李强强,张联升. 铝电解废渣资源化回收及无害化处理技术研究现状与展望. 金属矿山. 2023(12): 252-262 .
![]() | |
10. |
杨超,冯乃祥. 工业二次铝灰资源化回收利用现状. 现代化工. 2022(06): 73-77 .
![]() | |
11. |
董良民,焦芬,刘维,王焕龙,蒋善钦. 铝灰回收处理研究进展. 中南大学学报(自然科学版). 2022(10): 3791-3801 .
![]() | |
12. |
李颜凌,贺永东,赵亿坤,陈长科,何超. 高纯铝灰碱性焙烧提取铝研究. 矿冶工程. 2022(05): 128-131 .
![]() | |
13. |
张勇,何小娟,何运财,王钰婷. 二次铝灰烧制镁铝尖晶石固相反应动力学及材料耐水蚀性能. 有色金属科学与工程. 2022(06): 17-24 .
![]() |