Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
Citation: WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009

Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy

More Information
  • Received Date: November 29, 2017
  • Published Date: April 29, 2018
  • The influence of T6, T74, RRA aging treatment on microstructure, mechanical properties and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy has been investigated by exfoliation corrosion, polarization curve, electrical conductivity, mechanical properties testing and TEM microstructure analysis. The results show that the alloy had the highest strength and toughness, but was susceptible to corrosion under T6 aging treatment(σb:663.5 Mpa; σ0.2:625.4 MPa; δ:12.46 %). Compared with T6 aging treatment, the alloy had the best corrosion resistance with sacrificing the strength under T74 aging treatment(σb:640.2 MPa; σ0.2:621.3 MPa; δ:11.34 %). Although the strength and toughness of RRA aging treatment(σb:657.8 MPa; σ0.2:628.8 Mpa; δ:11.98 %)were slightly lower than T6 aging treatment, but it improved corrosion resistance obviously and had the excellent comprehensive performance. The strength and corrosion resistance of the alloy are related to matrix precipitates (η′) and grain boundary precipitates (η), respectively. A large amount of tiny η′ phase distributed more uniform and dispersed in matrix, the strength of the alloy is higher. The thick η phase distributed more discontinuous in the grain boundary, the corrosion resistance of the alloy is more beneficial, which is consistent with the physicochemical properties of η′ phase and η phase of the first principle.
  • [1]
    赵少奎.导弹与航天技术导论[M].北京:中国宇航出版社, 2008.
    [2]
    LUKASAK D A, HART R M. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age, 1991, 49(9):11-15. https://www.researchgate.net/publication/283604574_Aluminum_alloy_development_efforts_for_compression_dominated_structure_of_aircraft
    [3]
    刘显东, 王祝堂.解读航空航天7×××系铝合金材料的状态[J].轻合金加工技术, 2011, 39(5):26-28. doi: 10.3969/j.issn.1007-7235.2011.05.004
    [4]
    曾渝, 尹志民, 潘青林, 等.超高强铝合金的研究现状及发展趋势[J].中南大学学报(自然科学版), 2002, 33(6):592-596. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb200206011
    [5]
    李海. Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究[D]. 长沙: 中南大学, 2005.
    [6]
    ZHANG Z, CHEN K H, FANG H C, et al. Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5):1037-1042. doi: 10.1016/S1003-6326(08)60177-6
    [7]
    FANG H C, CHEN K H, CHEN X, et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science & Engineering A, 2011, 528(25/26):7606-7615. https://www.sciencedirect.com/science/article/pii/S0921509311006708
    [8]
    SANCTIS M D. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition[J]. Materials Science & Engineering A, 1991, 141(1):103-121. https://www.sciencedirect.com/science/article/pii/092150939190714X
    [9]
    MACASLILL I A, LADEPHA A D P, MILLIGAN J H, et al. Effects of cold and hot densification on the mechanical properties of a 7XXX series powder metallurgy alloy[J]. Powder Metallurgy, 2009, 52(4):304-310. doi: 10.1179/174329009X409723
    [10]
    李杰华. 铝合金熔体旋转喷吹除气净化技术的研究[D]. 西安: 西北工业大学, 2006.
    [11]
    DONG X, HUANG X, LIU L, et al. A liquid aluminum alloy electromagnetic transport process for high pressure die casting[J]. Journal of Materials Processing Technology, 2016, 234:217-227. doi: 10.1016/j.jmatprotec.2016.03.028
    [12]
    CHEN K H, HUANG L P, HU H W, et al. Effect of ultrasonic melt pretreatment on structure and properties of high strength 7055 aluminum alloy[J]. Journal of Central South University of Technology, 2005, 36(3):354-357. https://www.researchgate.net/publication/292171868_Effect_of_ultrasonic_melt_pretreatment_on_structure_and_properties_of_high_strength_7055_aluminum_alloy
    [13]
    王东, 马宗义.轧制工艺对7050铝合金显微组织和力学性能的影响[J].金属学报, 2008, 44(1):49-54. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jsxb200801010
    [14]
    LI J P, SHEN J, YAN X D, et al. Recrystallization behavior of 7050 aluminum alloy during multi-pass hot compression process[J]. Chinese Journal of Nonferrous Metals, 2009, 19(10):1754-1758.
    [15]
    ROBSON J D, PRANGNELL P B. Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J]. Metal Science Journal, 2013, 18(6):607-614.
    [16]
    MONDAL C, MUKHOPADHYAY A K, RAGHU T, et al. Tensile properties of peak aged 7055 aluminum alloy extrusions[J]. Materials Science & Engineering A, 2007, 454(25):673-678. https://www.sciencedirect.com/science/article/pii/S0921509306023288
    [17]
    李俊鹏, 沈健, 闫晓东.温度对7075铝合金热变形显微组织演化的影响[J].中国有色金属学报, 2008, 18(11):1951-1957. doi: 10.3321/j.issn:1004-0609.2008.11.001
    [18]
    陈康华, 刘红卫, 刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南大学学报(自然科学版), 2000, 31(6):528-531. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zngydxxb200006015
    [19]
    陈康华, 张茁, 刘红卫, 等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J].中南大学学报(自然科学版), 2003, 34(2):114-118. http://d.wanfangdata.com.cn/Periodical_zngydxxb200302002.aspx
    [20]
    JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering A, 2014, 605:167-175. https://www.sciencedirect.com/science/article/pii/S0921509314002822
    [21]
    李杰. 热处理对7055合金组织和性能的影响[D]. 长沙: 中南大学, 2005.
    [22]
    郑子樵, 李红英, 莫志民.一种7055型铝合金的RRA处理[J].中国有色金属学报, 2001, 11(5):771-776. https://www.wenkuxiazai.com/doc/cf5642ee4afe04a1b071de18.html
    [23]
    李鑫. 7055铝合金RRA处理的非等温晶界η相粗化动力学行为研究[D]. 长沙: 中南大学, 2013.
    [24]
    张艳秋. 7A09铝合金复杂盘饼类锻件缺陷形成机理及组织性能控制[D]. 哈尔滨: 哈尔滨工业大学, 2008.
    [25]
    BAI S, LIU Z, LI Y, et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science & Engineering A, 2010, 527(7/8):1806-1814. https://www.sciencedirect.com/science/article/pii/S0921509309012118
    [26]
    SENKOV O N, SHAGIEV M R, SENKOVA S V, et al. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008, 56(15):3723-3738. doi: 10.1016/j.actamat.2008.04.005
    [27]
    曾渝. 超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D]. 长沙: 中南大学, 2004.
    [28]
    LI G F, ZHANG X M, LI P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6):935-941. doi: 10.1016/S1003-6326(09)60239-9
    [29]
    PARK J K. Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6[J]. Materials Science & Engineering A, 1988, 103(2):223-231. https://www.sciencedirect.com/science/article/pii/0025541688905125
    [30]
    WILLIAMS J C, JR E A S. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19):5775-5799. doi: 10.1016/j.actamat.2003.08.023
    [31]
    PARK J K, ARDELL A J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metallurgical Transactions A, 1983, 14(10):1957-1965. doi: 10.1007/BF02662363
    [32]
    CHEN S, CHEN K, PENG G, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials & Design, 2012, 35:93-98. http://www.sciencedirect.com/science/article/pii/S0261306911006583
    [33]
    KANNO M, ARAKI I, CUI Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J]. Metal Science Journal, 1994, 10(7):599-603. http://www.ingentaconnect.com/content/maney/mst/1994/00000010/00000007/art00003
    [34]
    MAHATHANINWONG N, PLOOKPHOL T, WANNASIN J, et al. T6 heat treatment of rheocasting 7075 Al alloy[J]. Materials Science & Engineering A, 2012, 532:91-99. https://www.sciencedirect.com/science/article/pii/S0921509311011701
    [35]
    黄元春, 肖政兵, 张欢欢, 等.平衡相对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr铝合金性能影响:第一性原理研究[J].航空材料学报, 2014, 34(3):28-34. doi: 10.11868/j.issn.1005-5053.2014.3.005
    [36]
    陈军洲. AA 7055铝合金的时效析出行为与力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2008.
    [37]
    WEN K, FAN Y, WANG G, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Materials & Design, 2016, 101:16-23. https://www.sciencedirect.com/science/article/pii/S0264127516304476
    [38]
    WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007, 49(3):1437-1449. doi: 10.1016/j.corsci.2006.06.033
    [39]
    黄元春, 刘宇, 肖政兵, 等.时效处理对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr合金超声铸锭轧件组织与抗腐蚀性能的影响[J].粉末冶金材料科学与工程, 2015(2):280-287. http://www.cnki.com.cn/Article/CJFDTotal-FMGC201502020.htm
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]ZHU Bingyao, JIA Xiaobo. Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 511-517. DOI: 10.13264/j.cnki.ysjskx.2023.04.009
    [5]ZHANG Tao, ZOU Jinchao, HUANG Zhiquan, ZHAO Chunjiang, WANG Junpeng. Effect of rolling temperature on the corrosion resistance of AZ61 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 473-480. DOI: 10.13264/j.cnki.ysjskx.2023.04.005
    [6]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [7]QI Zhiqi, YU Xi, DU Junfeng, WANG Liangliang, LIU Bin, PANG Zaisheng, LI Jiajie, WANG Gongping. Effect of Nd Substitution for sintered Pr-Nd-Fe-B magnet corrosion resistance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 77-79, 104. DOI: 10.13264/j.cnki.ysjskx.2018.01.013
    [8]LIN Xiangfei, KANG Wei, LI Hongying. Effect of boron and rare earth elements on corrosion property of aluminum cathode plate[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 42-47. DOI: 10.13264/j.cnki.ysjskx.2017.03.007
    [9]LU Zhicheng LI Yongliang, ZHU Maohua, LI Maowang, YANG Zhanbing, WANG Fuming, LIU Zhenlin, WANG Fuming. The effect of Al content on the corrosion resistance of Pb-Al alloys[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 52-56. DOI: 10.13264/j.cnki.ysjskx.2015.05.010
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
  • Cited by

    Periodical cited type(3)

    1. 石勇,郑伯坤,段弘宇,黄腾龙,彭亮,赖伟,廖舟. 桨叶复合结构对充填料浆均质化的影响研究. 矿业研究与开发. 2024(06): 149-155 .
    2. 高晨育,李强. 双层桨搅拌釜气液两相流的混合效果研究. 化工机械. 2024(04): 546-549+633 .
    3. 王忠锋,冯羽生,黄伟玲. 不同结构组态对导流筒搅拌槽混合效率影响分析. 有色金属科学与工程. 2024(06): 814-821+855 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (167) PDF downloads (7) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return