Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009
Citation: WANG Jingjing, HUANG Yuanchun, LIU Yu, XU Tiancheng. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 47-55. DOI: 10.13264/j.cnki.ysjskx.2018.02.009

Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy

More Information
  • Received Date: November 29, 2017
  • Published Date: April 29, 2018
  • The influence of T6, T74, RRA aging treatment on microstructure, mechanical properties and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy has been investigated by exfoliation corrosion, polarization curve, electrical conductivity, mechanical properties testing and TEM microstructure analysis. The results show that the alloy had the highest strength and toughness, but was susceptible to corrosion under T6 aging treatment(σb:663.5 Mpa; σ0.2:625.4 MPa; δ:12.46 %). Compared with T6 aging treatment, the alloy had the best corrosion resistance with sacrificing the strength under T74 aging treatment(σb:640.2 MPa; σ0.2:621.3 MPa; δ:11.34 %). Although the strength and toughness of RRA aging treatment(σb:657.8 MPa; σ0.2:628.8 Mpa; δ:11.98 %)were slightly lower than T6 aging treatment, but it improved corrosion resistance obviously and had the excellent comprehensive performance. The strength and corrosion resistance of the alloy are related to matrix precipitates (η′) and grain boundary precipitates (η), respectively. A large amount of tiny η′ phase distributed more uniform and dispersed in matrix, the strength of the alloy is higher. The thick η phase distributed more discontinuous in the grain boundary, the corrosion resistance of the alloy is more beneficial, which is consistent with the physicochemical properties of η′ phase and η phase of the first principle.
  • [1]
    赵少奎.导弹与航天技术导论[M].北京:中国宇航出版社, 2008.
    [2]
    LUKASAK D A, HART R M. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age, 1991, 49(9):11-15. https://www.researchgate.net/publication/283604574_Aluminum_alloy_development_efforts_for_compression_dominated_structure_of_aircraft
    [3]
    刘显东, 王祝堂.解读航空航天7×××系铝合金材料的状态[J].轻合金加工技术, 2011, 39(5):26-28. doi: 10.3969/j.issn.1007-7235.2011.05.004
    [4]
    曾渝, 尹志民, 潘青林, 等.超高强铝合金的研究现状及发展趋势[J].中南大学学报(自然科学版), 2002, 33(6):592-596. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb200206011
    [5]
    李海. Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究[D]. 长沙: 中南大学, 2005.
    [6]
    ZHANG Z, CHEN K H, FANG H C, et al. Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5):1037-1042. doi: 10.1016/S1003-6326(08)60177-6
    [7]
    FANG H C, CHEN K H, CHEN X, et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Materials Science & Engineering A, 2011, 528(25/26):7606-7615. https://www.sciencedirect.com/science/article/pii/S0921509311006708
    [8]
    SANCTIS M D. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition[J]. Materials Science & Engineering A, 1991, 141(1):103-121. https://www.sciencedirect.com/science/article/pii/092150939190714X
    [9]
    MACASLILL I A, LADEPHA A D P, MILLIGAN J H, et al. Effects of cold and hot densification on the mechanical properties of a 7XXX series powder metallurgy alloy[J]. Powder Metallurgy, 2009, 52(4):304-310. doi: 10.1179/174329009X409723
    [10]
    李杰华. 铝合金熔体旋转喷吹除气净化技术的研究[D]. 西安: 西北工业大学, 2006.
    [11]
    DONG X, HUANG X, LIU L, et al. A liquid aluminum alloy electromagnetic transport process for high pressure die casting[J]. Journal of Materials Processing Technology, 2016, 234:217-227. doi: 10.1016/j.jmatprotec.2016.03.028
    [12]
    CHEN K H, HUANG L P, HU H W, et al. Effect of ultrasonic melt pretreatment on structure and properties of high strength 7055 aluminum alloy[J]. Journal of Central South University of Technology, 2005, 36(3):354-357. https://www.researchgate.net/publication/292171868_Effect_of_ultrasonic_melt_pretreatment_on_structure_and_properties_of_high_strength_7055_aluminum_alloy
    [13]
    王东, 马宗义.轧制工艺对7050铝合金显微组织和力学性能的影响[J].金属学报, 2008, 44(1):49-54. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jsxb200801010
    [14]
    LI J P, SHEN J, YAN X D, et al. Recrystallization behavior of 7050 aluminum alloy during multi-pass hot compression process[J]. Chinese Journal of Nonferrous Metals, 2009, 19(10):1754-1758.
    [15]
    ROBSON J D, PRANGNELL P B. Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J]. Metal Science Journal, 2013, 18(6):607-614.
    [16]
    MONDAL C, MUKHOPADHYAY A K, RAGHU T, et al. Tensile properties of peak aged 7055 aluminum alloy extrusions[J]. Materials Science & Engineering A, 2007, 454(25):673-678. https://www.sciencedirect.com/science/article/pii/S0921509306023288
    [17]
    李俊鹏, 沈健, 闫晓东.温度对7075铝合金热变形显微组织演化的影响[J].中国有色金属学报, 2008, 18(11):1951-1957. doi: 10.3321/j.issn:1004-0609.2008.11.001
    [18]
    陈康华, 刘红卫, 刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南大学学报(自然科学版), 2000, 31(6):528-531. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zngydxxb200006015
    [19]
    陈康华, 张茁, 刘红卫, 等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J].中南大学学报(自然科学版), 2003, 34(2):114-118. http://d.wanfangdata.com.cn/Periodical_zngydxxb200302002.aspx
    [20]
    JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering A, 2014, 605:167-175. https://www.sciencedirect.com/science/article/pii/S0921509314002822
    [21]
    李杰. 热处理对7055合金组织和性能的影响[D]. 长沙: 中南大学, 2005.
    [22]
    郑子樵, 李红英, 莫志民.一种7055型铝合金的RRA处理[J].中国有色金属学报, 2001, 11(5):771-776. https://www.wenkuxiazai.com/doc/cf5642ee4afe04a1b071de18.html
    [23]
    李鑫. 7055铝合金RRA处理的非等温晶界η相粗化动力学行为研究[D]. 长沙: 中南大学, 2013.
    [24]
    张艳秋. 7A09铝合金复杂盘饼类锻件缺陷形成机理及组织性能控制[D]. 哈尔滨: 哈尔滨工业大学, 2008.
    [25]
    BAI S, LIU Z, LI Y, et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science & Engineering A, 2010, 527(7/8):1806-1814. https://www.sciencedirect.com/science/article/pii/S0921509309012118
    [26]
    SENKOV O N, SHAGIEV M R, SENKOVA S V, et al. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008, 56(15):3723-3738. doi: 10.1016/j.actamat.2008.04.005
    [27]
    曾渝. 超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D]. 长沙: 中南大学, 2004.
    [28]
    LI G F, ZHANG X M, LI P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6):935-941. doi: 10.1016/S1003-6326(09)60239-9
    [29]
    PARK J K. Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6[J]. Materials Science & Engineering A, 1988, 103(2):223-231. https://www.sciencedirect.com/science/article/pii/0025541688905125
    [30]
    WILLIAMS J C, JR E A S. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51(19):5775-5799. doi: 10.1016/j.actamat.2003.08.023
    [31]
    PARK J K, ARDELL A J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metallurgical Transactions A, 1983, 14(10):1957-1965. doi: 10.1007/BF02662363
    [32]
    CHEN S, CHEN K, PENG G, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Materials & Design, 2012, 35:93-98. http://www.sciencedirect.com/science/article/pii/S0261306911006583
    [33]
    KANNO M, ARAKI I, CUI Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J]. Metal Science Journal, 1994, 10(7):599-603. http://www.ingentaconnect.com/content/maney/mst/1994/00000010/00000007/art00003
    [34]
    MAHATHANINWONG N, PLOOKPHOL T, WANNASIN J, et al. T6 heat treatment of rheocasting 7075 Al alloy[J]. Materials Science & Engineering A, 2012, 532:91-99. https://www.sciencedirect.com/science/article/pii/S0921509311011701
    [35]
    黄元春, 肖政兵, 张欢欢, 等.平衡相对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr铝合金性能影响:第一性原理研究[J].航空材料学报, 2014, 34(3):28-34. doi: 10.11868/j.issn.1005-5053.2014.3.005
    [36]
    陈军洲. AA 7055铝合金的时效析出行为与力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2008.
    [37]
    WEN K, FAN Y, WANG G, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers[J]. Materials & Design, 2016, 101:16-23. https://www.sciencedirect.com/science/article/pii/S0264127516304476
    [38]
    WLOKA J, HACK T, VIRTANEN S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2007, 49(3):1437-1449. doi: 10.1016/j.corsci.2006.06.033
    [39]
    黄元春, 刘宇, 肖政兵, 等.时效处理对Al-7.8Zn-1.6Mg-1.8Cu-0.12Zr合金超声铸锭轧件组织与抗腐蚀性能的影响[J].粉末冶金材料科学与工程, 2015(2):280-287. http://www.cnki.com.cn/Article/CJFDTotal-FMGC201502020.htm
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]ZHU Bingyao, JIA Xiaobo. Study on microstructure and corrosion resistance of an in situ Al2O3(p)/7075 alloy for automotive parts prepared by ultrasonic vibration[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 511-517. DOI: 10.13264/j.cnki.ysjskx.2023.04.009
    [5]ZHANG Tao, ZOU Jinchao, HUANG Zhiquan, ZHAO Chunjiang, WANG Junpeng. Effect of rolling temperature on the corrosion resistance of AZ61 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 473-480. DOI: 10.13264/j.cnki.ysjskx.2023.04.005
    [6]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [7]QI Zhiqi, YU Xi, DU Junfeng, WANG Liangliang, LIU Bin, PANG Zaisheng, LI Jiajie, WANG Gongping. Effect of Nd Substitution for sintered Pr-Nd-Fe-B magnet corrosion resistance[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 77-79, 104. DOI: 10.13264/j.cnki.ysjskx.2018.01.013
    [8]LIN Xiangfei, KANG Wei, LI Hongying. Effect of boron and rare earth elements on corrosion property of aluminum cathode plate[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 42-47. DOI: 10.13264/j.cnki.ysjskx.2017.03.007
    [9]LU Zhicheng LI Yongliang, ZHU Maohua, LI Maowang, YANG Zhanbing, WANG Fuming, LIU Zhenlin, WANG Fuming. The effect of Al content on the corrosion resistance of Pb-Al alloys[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 52-56. DOI: 10.13264/j.cnki.ysjskx.2015.05.010
    [10]HE Fu-ping, LIU Feng, LI Jian-yun, ZHANG Jing-en, WANG Zhi-xiang. The effects of solution process and aging on Al-Mg-Si-Cu alloy's microstructure and properties[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 44-48. DOI: 10.13264/j.cnki.ysjskx.2013.01.013
  • Cited by

    Periodical cited type(22)

    1. 郝莹,王明伟. 时效处理对石墨烯/Al-Zn-Mg-Cu合金复合材料性能的影响. 金属热处理. 2025(01): 133-139 .
    2. 闻杰,刘烨欣,孙昂,龙泽熙. 第二级时效工艺对7C04铝合金组织及性能的影响. 热处理技术与装备. 2025(01): 10-14+24 .
    3. 房洪杰,杨喻曾,张智楷,闵红,刘振东,沈雨欣. 含稀土Ce 7055铝合金的固溶时效处理. 金属热处理. 2025(02): 155-159 .
    4. 宫子琪,郑理银. 含Sc超高强度铝合金成分优化及组织性能研究. 有色金属科学与工程. 2025(01): 75-84 . 本站查看
    5. 胡威,陈继强,苗佳乐,幸婷,刘超. 预变形对Al-Cu-Li-(Mg-Ag)合金时效析出行为的影响. 有色金属科学与工程. 2024(02): 195-203+211 . 本站查看
    6. 张波,刘艺,夏书标. 热处理对选区激光熔化Co-Cr合金微观组织与力学性能的影响. 有色金属科学与工程. 2024(02): 265-273 . 本站查看
    7. 宗林,赵鸿金,胡玉军,张兵,徐星星. 双级时效工艺对QAl9-4铝青铜力学性能的影响. 有色金属科学与工程. 2024(03): 392-399+431 . 本站查看
    8. 汤中英,邢清源,杨守杰. 时效工艺对Al-Zn-Mg-Sc-Er合金显微组织与耐蚀性能的影响. 材料保护. 2024(09): 154-160 .
    9. 黄耀,苏志钢,朱彬荣,陈云翔,万涛,庹祖雄. 腐蚀对架空输电线路铁塔承载力特性影响. 有色金属科学与工程. 2024(05): 723-731 . 本站查看
    10. 邓红玲,张思雨,钟辉隆,李声慈,齐亮,陈继强. 固溶处理对稀土改性Al-Zn-Mg-Cu合金组织及性能的影响. 金属热处理. 2023(03): 32-38 .
    11. 王龙权,尹天天,张岩,宋闽,张基隆,曲畅. 7xxx高强铝合金熔化焊研究进展. 焊接. 2023(08): 44-54 .
    12. 马思怡,张伟健,苏睿明,李广龙,曲迎东,李荣德. 7xxx系铝合金回归再时效的研究现状. 有色金属科学与工程. 2022(02): 38-50 . 本站查看
    13. 汪鑫,姜中涛,周志明,林海涛,杨绪盛,代芳芳. 双级时效对7050铝合金锻件组织与性能的影响. 轻合金加工技术. 2022(01): 47-51 .
    14. 贺嘉宁,贾咏馨,于帅,苏睿明,聂赛男. 高强韧铝合金非等温时效工艺的研究进展. 有色金属科学与工程. 2022(05): 23-28 . 本站查看
    15. 陈扬,孙正启,张晓欣,孙乾钊,黄苏婷,韩先洪. 热处理工艺参数对7075铝合金T6态组织和性能的影响. 塑性工程学报. 2021(07): 145-149 .
    16. 陈蔚清,徐观明,崔紫依,余家甜,张雪辉,王春明. 超声滚压处理7B85合金的显微组织和力学性能. 有色金属科学与工程. 2021(06): 80-87 . 本站查看
    17. 刘炼煌,刘龙飞,曹富华,杨涛,殷鹏志. Er对7xxx系铝合金冲击变形及失效行为的影响. 兵器材料科学与工程. 2020(01): 125-130 .
    18. 田少鲲,李静媛,张俊龙,吕丹. Sc对7056铝合金组织和性能的影响. 工程科学学报. 2019(10): 1298-1306 .
    19. 晁代义,孙有政,刘晓滕,李兴东,李维建,吕正风,程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响. 材料导报. 2019(S2): 398-401 .
    20. 沈忱,孙会,郅东东. 7XXX系(Al-Zn-Mg-Cu)铝合金淬火特性的研究进展. 有色金属科学与工程. 2018(04): 70-75 . 本站查看
    21. 孙军伟,张荣伟,李升燕,周军,赵鸿金. 5182铝合金热变形行为研究. 有色金属科学与工程. 2018(05): 43-48 . 本站查看
    22. 宋伟苑,林高用,李琪. 人工时效前停放时间对7055铝合金挤压管显微组织与性能的影响. 有色金属科学与工程. 2018(05): 37-42 . 本站查看

    Other cited types(10)

Catalog

    Article Metrics

    Article views (164) PDF downloads (6) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return