Citation: | CHENG Boming, YANG Jinmeng, LIU Baolu, ZHONG Shengwen. Effect of sintering temperature on the structure and electrochemical properties of LiNi0.8Co0.15Al0.05O2[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 47-52. DOI: 10.13264/j.cnki.ysjskx.2018.04.008 |
[1] |
刘柏男, 徐泉, 褚赓, 等.锂离子电池高容量硅碳负极材料研究进展[J].储能科学与技术, 2016, 5(4):417-421. http://d.old.wanfangdata.com.cn/Periodical/cnkxyjs201604003
|
[2] |
赖江洪, 钟盛文, 郭进康, 等. LiNi1/3Co1/3Mn1/3O2正极材料的合成与性能[J].有色金属科学与工程, 2017, 8(4):68-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201704012
|
[3] |
吕庆文, 尹从岭, 钟盛文, 等. LiNi0.6Co0.1Mn0.3O2正极材料的合成与性能[J].有色金属科学与工程, 2016, 7(4):50-54. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160409
|
[4] |
CHO Y H, JANG YOON J, et al. Thermal stability of charged LiNi0.5Co0.2Mn0.3O2, cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J]. Journal of Alloys & Compounds, 2013, 562(562):219-223.
|
[5] |
CHONG S Y, UN W, YUNG S T, et al. Structural stability of LiNiO2 cycled above 4.2 V[J]. Acs Energy Letters, 2017, 2(5):1150-1155. doi: 10.1021/acsenergylett.7b00304
|
[6] |
MURALI NBABU K V, BABU K E, et al. Structural and morphological characterization of Mg doped LiNiO2 cathode materials for Lithium-Ion Batteries[J]. Chemical Science Transcations, 2015, 4(4):1031-1036. http://www.sciencedirect.com/science/article/pii/S0378775311018246
|
[7] |
KIM Y. First principles investigation of the structure and stability of LiNiO2, doped with Co and Mn[J]. Journal of Materials Science, 2012, 47(21):7558-7563. doi: 10.1007/s10853-012-6299-0
|
[8] |
ZHONG S, LAI M, YAO W, et al. Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2, positive-electrode material for lithium-ion batteries[J]. Electrochimica Acta, 2016, 212:343-351. doi: 10.1016/j.electacta.2016.07.040
|
[9] |
KO H S, KIM J H, WANG J, et al. Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries[J]. Journal of Power Sources, 2017, 372:107-115. doi: 10.1016/j.jpowsour.2017.10.021
|
[10] |
华政. 锂离子电池LiNi0. 8Co0. 15Al0. 05O2正极材料的合成与改性研究[D]. 昆明: 昆明理工大学, 2017. http://www.cqvip.com/QK/71651X/201604/669384057.html
|
[11] |
SONG C, WANG W, PENG H, et al. Improving the electrochemical performance of LiNi0.8Co0.15Al0.05O2 in lithium ion batteries by LiAlO2 surface modification[J]. Applied Sciences, 2018, 8(3):378. doi: 10.3390/app8030378
|
[12] |
GRENIER A, LIU H, WIADEREK K M, et al. Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer[J]. Chemistry of Materials, 2017, 29(17):7345-7352. doi: 10.1021/acs.chemmater.7b02236
|
[13] |
LI W, LIU X, CELIO H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cycle ability[J]. Advanced Energy Materials, 2018, 170:3154. doi: 10.1002/aenm.201703154
|
[14] |
WU N, WU H, YUAN W, et al. Facile synthesis of one-dimensional LiNi0.80Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(26):13648-13652. doi: 10.1039/C5TA02767E
|
[15] |
LIANG M, SONG D, ZHANG H, et al. Improved performances of LiNi0.80Co0.15Al0.05O2 material employing NaAlO2 as a new aluminium source[J]. Acs Appl Mater Interfaces, 2017(9):38567-38574. doi: 10.1021/acsami.7b12306
|
[16] |
YU J. CARBO N NANOTUBE S. Coating on LiNi0.80Co0.15Al0.05O2 as cathode materials for lithium battery[J]. International Journal of Electrochemical Science, 2017, 12(12):11892-11903.
|
[17] |
QIU Z, ZHANG Y, DONG P, et al. A facile method for synthesis of LiNi0.80Co0.15Al0.05O2, cathode material[J]. Journal of Materials Science Materials in Electronics, 2017, 28(24):1-7.
|
[18] |
XIE H, DU K, HU G, et al. Synthesis of LiNi0.80Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties[J]. Journal of Materials Chemistry A, 2015, 3(40):20236-20243. doi: 10.1039/C5TA05266A
|
[19] |
刘城. 高镍层状结构LiNi0. 80Co0. 15Al0. 05O2正极材料的合成与性能研究[D]. 天津: 天津理工大学, 2016.
|
[20] |
ROBERT R, BUNZLI C, Berg E J, et al. Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X- ray diffraction analyses[J]. Chemistry of Materials, 2015, 27(2):526-536. doi: 10.1021/cm503833b
|
[21] |
CHEN Y, LI P, ZHAO S, et al. Influence of integrated microstructure on the performance of LiNi0.80Co0.15Al0.05O2 as a cathodic material for lithium ion batteries[J]. Rsc Advances, 2017, 7(46):29233-29239. doi: 10.1039/C7RA04206J
|
[22] |
SONG C, WANG W, PENG H, et al. Improving the electrochemical performance of LiNi0.80Co0.15Al0.05O2 in lithium ion batteries by LiAlO2 surface modification[J]. Applied Sciences, 2018, 8(3):378. doi: 10.3390/app8030378
|
[1] | WANG Jiansong, QIN Jia, JING Tao, HUANG Tao, SHI Xinxin, CAO Zhanmin. Thermodynamic simulation and optimization of lead side blowing oxidation smelting process[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 7-15. DOI: 10.13264/j.cnki.ysjskx.2020.05.002 |
[2] | LI Xugang, XIE Wei, WANG Nai, QIAO Zhiyu, CAO Zhanmin. Thermodynamic optimization of Al2O3-V2O5 system[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2019.06.003 |
[3] | LIN Qingshan, WANG Jingsong, XUE Qingguo, YUAN Xiaotao, PAN Yuzhu. Research on thermodynamic model for the removal of carbon dioxide in blast furnace gas by hydrate method[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 1-6. DOI: 10.13264/j.cnki.ysjskx.2018.05.001 |
[4] | DUAN Shengchao, MA Jianjun, GUO Hanjie, SHI Xiao, MAO Yu. Thermodynamic analysis and kinetics mechanism for direct nitridation reaction[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 14-21. DOI: 10.13264/j.cnki.ysjskx.2016.04.003 |
[5] | TONG Zhifang, XIAO Cheng, WEI Zhanlong. Molecular dynamics simulation and its application to metallurgical slag[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 15-20. DOI: 10.13264/j.cnki.ysjskx.2016.03.003 |
[6] | WANG Jinliang, ZHANG Wenhai, TONG Changren. Thermodynamic model of freeze slag inside reaction shaft of copper flash smelting furnace[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 23-27. DOI: 10.13264/j.cnki.ysjskx.2014.05.004 |
[7] | CHANG Zhenzhen, ZHANG Jiongming, WANG Shunxi, LIU Yi, WANG Bo. Numerical simulation of free surface vortex in 150 t ladle and turbulent model choice[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 37-43. DOI: 10.13264/j.cnki.ysjskx.2014.04.008 |
[8] | YU Chang-lin, ZHOU Xiao-chun, HU Jiu-biao, FAN Qi-zhe. Thermodynamic Simulation Analysis of the Catalytic Partial Oxidation of Methane[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 26-32. DOI: 10.13264/j.cnki.ysjskx.2014.02.005 |
[9] | CAI Si-jing, ZHANG Dong, HE Li. On the Liquefying-Destabilizing Mechanism of Tailings Reservoir Caused by Earthquake and Its Numerical Modeling[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2011.02.002 |
[10] | NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38. |