Citation: | WU Junming, ZHOU Zhenfeng, PENG Xing, WANG Jingsong, XUE Qingguo. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2018.04.001 |
[1] |
HO C K, WU S M, ZHU H P, et al. Experimental and numerical investigations of gouge formation related to blast furnace burden distribution[J]. Minerals Engineering, 2009, 22(11):986-994. doi: 10.1016/j.mineng.2009.03.004
|
[2] |
ISHII K. Advanced pulverized coal injection technology and blast furnace operation[M]. NewYork:Pergamon Pr, 2000.
|
[3] |
税烺, 贺东风, 艾立翔, 等.冶金生产余能回收的一种新的能量分析法[J].有色金属科学与工程, 2012, 3(1):43-48. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201010
|
[4] |
MATHIESON J G, TRUELOVE J S, ROGERS H. Toward an understanding of coal combustion in blast furnace tuyere injection[J]. Fuel, 2005, 84(10):1229-1237. doi: 10.1016/j.fuel.2004.06.036
|
[5] |
王文泽, 湛文龙, 刘肖, 等.高炉入炉焦炭高温反应特性的研究[J].有色金属科学与工程, 2014, 5(1):9-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401002
|
[6] |
QIN M S, QI B. The full oxygen blast furnace (FOBF) process[C]//IISC The Sixth International Iron and Steel Congress.1990:589-595.
|
[7] |
QIN M, GAO Z, WANG G, et al. Blast furnace operation with full oxygen blast[J]. Ironmaking & Steelmaking, 1988(6):287-292. http://d.old.wanfangdata.com.cn/Periodical/gtyjxb-e201708003
|
[8] |
蓝荣宗, 王静松, 韩毅华, 等.高还原势气氛下烧结矿低温还原粉化试验研究[J].有色金属科学与工程, 2012, 3(1):5-9. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201002
|
[9] |
MURAI R, SATO M, ARIYAMA T. Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling[J]. Transactions of the Iron & Steel Institute of Japan, 2004, 44(12):2168-2177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0212116405
|
[10] |
DU S W, YEH C P, CHEN W H, et al. Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment[J]. Fuel, 2015, 143(1427):98-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234326820
|
[11] |
ZHOU Z, XUE Q, TANG H, et al. Coal combustion behavior in new ironmaking process of top gas recycling oxygen blast furnace[J]. JOM, 2017, 69(10):1790-1794. doi: 10.1007/s11837-017-2515-3
|
[12] |
SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2):728-738. doi: 10.1016/j.fuel.2010.08.030
|
[13] |
SHEN Y S, YU A B, AUSTIN P R, et al. CFD study of in-furnace phenomena of pulverised coal injection in blast furnace: Effects of operating conditions[J]. Powder Technology, 2012, 223(6):27-38. http://www.sciencedirect.com/science/article/pii/S0032591011003433
|
[14] |
SHEN Y, YU A, AUSTIN P, et al. Modelling in-furnace phenomena of pulverized coal injection in ironmaking blast furnace: effect of coke bed porosities[J]. Minerals Engineering, 2012, 33(6):54-65. http://www.sciencedirect.com/science/article/pii/S0892687511003815
|
[15] |
SHEN Y, SHIOZAWA T, AUSTIN P, et al. Model study of the effect of bird's nest on transport phenomena in the raceway of an ironmaking blast furnace[J]. Minerals Engineering, 2014, 63(Complete):91-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232799705
|
[16] |
JAMALUDDIN A S, WALL T F, TRUELOVE J S. Combustion of pulverized coal as a tuyère-injectant to the blast furnace[J]. Symposium on Combustion, 1988, 21(1):575-584. http://www.sciencedirect.com/science/article/pii/S008207848880287X
|
[17] |
FENG Y Q, PINSON D, YU A B, et al. Numerical study of gas-solid flow in the raceway of a blast furnace[J]. Steel Research International, 2003, 74(9):523-530. doi: 10.1002/srin.2003.74.issue-9
|
[18] |
KOBAYASHI H, HOWARD J B, SAROFIM A F. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1):411-425. doi: 10.1016/S0082-0784(77)80341-X
|
[19] |
UBHAYAKAR S K, STICKLER D B, JR C W V R, et al. Rapid devolatilization of pulverized coal in hot combustion gases[J].Symposium on Combustion, 1977, 16(1):427-436. doi: 10.1016/S0082-0784(77)80342-1
|
[20] |
MAGNUSSEN B F, HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium on Combustion, 1977, 16(1):719-729. doi: 10.1016/S0082-0784(77)80366-4
|
[21] |
WAKAO N, KAGUEI S, FUNAZKRI T. Effect of fluid dispersion coefficients on particle-to-fluid heat-transfer coefficients in packed-beds-correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3):325-36. doi: 10.1016/0009-2509(79)85064-2
|
[22] |
FIELD M A. Combustion of pulverised coal[M]. UK:British Coal Utilisation Research Association, 1967.
|
[23] |
SHEN Y, GUO B, YU A, et al. Three-dimensional modelling of coal combustion in blast furnace[J]. Isij International, 2008, 48(6):777-786. doi: 10.2355/isijinternational.48.777
|
[24] |
TAKEDA K, LOCKWOOD F C. Integrated mathematical model of pulverised coal combustion in a blast furnance[J]. Isij International, 1997, 37(5):432-440. doi: 10.2355/isijinternational.37.432
|
[25] |
YEH C P, DU S W, TSAI C H, et al. Numerical analysis of flow and combustion behavior in tuyere and raceway of blast furnace fueled with pulverized coal and recycled top gas[J]. Energy, 2012, 42(1):233-240. doi: 10.1016/j.energy.2012.03.065
|
[1] | LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013 |
[2] | LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008 |
[3] | LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013 |
[4] | LUO Linshan, LIU Wenwen, WEN Xiaoqiang, ZHANG Fan, ZHOU Xinhua, GUO Chunping, ZHOU Youchi, PU Jian. Effect of La doping on the structure and electrochemical properties of layered Li-rich Mn-based oxide cathode materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 104-110. DOI: 10.13264/j.cnki.ysjskx.2019.03.018 |
[5] | LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012 |
[6] | LIU Xilin, ZhONG Shengwen, MEI Wenjie, CHEN Peng, JIN Zhu, WANG Chunxiang. Synthesis and properties of Li1.07(Ni0.4Mn0.53)1-xAlxO2 as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 63-68. DOI: 10.13264/j.cnki.ysjskx.2015.05.012 |
[7] | Yin Zhuang, Zhou Hongwei, Ding Xianan, Yan Gang, Xin Qin, Wang Xindong. Synthesis and performance study of one-dimensional LiNi1/3Co1/3Mn1/3O2 nanofiber prepared by electrospinning[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2015.02.006 |
[8] | ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002 |
[9] | ZHONG Sheng-wen, FENG Zhi-fang, XIE Min. Synthesis and Performances of Li (Mn1/3Ni1/3Co1/3)O2 as the AA Type of Lithium-ion Batteries by Melting Salt[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 9-13. |
[10] | LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37. |