Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Junming, ZHOU Zhenfeng, PENG Xing, WANG Jingsong, XUE Qingguo. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2018.04.001
Citation: WU Junming, ZHOU Zhenfeng, PENG Xing, WANG Jingsong, XUE Qingguo. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2018.04.001

Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace

More Information
  • Received Date: May 06, 2018
  • Published Date: August 30, 2018
  • The top gas recycling oxygen blast furnace is a new iron making process that can effectively increase the coal ratio and reduce carbon dioxide emissions. However, the complex combustion conditions will make the combustion of coal in the raceway and the behavior of the lower part of the blast furnace change greatly. In order to understand the complicated phenomenon of pulverized coal injection under the new oxygen blast furnace process, a three-dimensional CFD model has been developed to simulate oxygen coal lance-blowpipe-tuyere-raceway-coke bed of oxygen blast furnace. The temperature field, the concentration field and the flow and combustion characteristics of pulverized coal were investigated. The results indicate that the temperature is significantly increased, the high temperature area is enlarged, and the carbon dioxide content is increased of the raceway under the oxygen blast furnace. And the carbon monoxide content in the coke bed increased significantly. In addition, the coal burnout increased by 10.24% compared to that of the TBF.
  • [1]
    HO C K, WU S M, ZHU H P, et al. Experimental and numerical investigations of gouge formation related to blast furnace burden distribution[J]. Minerals Engineering, 2009, 22(11):986-994. doi: 10.1016/j.mineng.2009.03.004
    [2]
    ISHII K. Advanced pulverized coal injection technology and blast furnace operation[M]. NewYork:Pergamon Pr, 2000.
    [3]
    税烺, 贺东风, 艾立翔, 等.冶金生产余能回收的一种新的能量分析法[J].有色金属科学与工程, 2012, 3(1):43-48. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201010
    [4]
    MATHIESON J G, TRUELOVE J S, ROGERS H. Toward an understanding of coal combustion in blast furnace tuyere injection[J]. Fuel, 2005, 84(10):1229-1237. doi: 10.1016/j.fuel.2004.06.036
    [5]
    王文泽, 湛文龙, 刘肖, 等.高炉入炉焦炭高温反应特性的研究[J].有色金属科学与工程, 2014, 5(1):9-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401002
    [6]
    QIN M S, QI B. The full oxygen blast furnace (FOBF) process[C]//IISC The Sixth International Iron and Steel Congress.1990:589-595.
    [7]
    QIN M, GAO Z, WANG G, et al. Blast furnace operation with full oxygen blast[J]. Ironmaking & Steelmaking, 1988(6):287-292. http://d.old.wanfangdata.com.cn/Periodical/gtyjxb-e201708003
    [8]
    蓝荣宗, 王静松, 韩毅华, 等.高还原势气氛下烧结矿低温还原粉化试验研究[J].有色金属科学与工程, 2012, 3(1):5-9. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201002
    [9]
    MURAI R, SATO M, ARIYAMA T. Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling[J]. Transactions of the Iron & Steel Institute of Japan, 2004, 44(12):2168-2177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0212116405
    [10]
    DU S W, YEH C P, CHEN W H, et al. Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment[J]. Fuel, 2015, 143(1427):98-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234326820
    [11]
    ZHOU Z, XUE Q, TANG H, et al. Coal combustion behavior in new ironmaking process of top gas recycling oxygen blast furnace[J]. JOM, 2017, 69(10):1790-1794. doi: 10.1007/s11837-017-2515-3
    [12]
    SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2):728-738. doi: 10.1016/j.fuel.2010.08.030
    [13]
    SHEN Y S, YU A B, AUSTIN P R, et al. CFD study of in-furnace phenomena of pulverised coal injection in blast furnace: Effects of operating conditions[J]. Powder Technology, 2012, 223(6):27-38. http://www.sciencedirect.com/science/article/pii/S0032591011003433
    [14]
    SHEN Y, YU A, AUSTIN P, et al. Modelling in-furnace phenomena of pulverized coal injection in ironmaking blast furnace: effect of coke bed porosities[J]. Minerals Engineering, 2012, 33(6):54-65. http://www.sciencedirect.com/science/article/pii/S0892687511003815
    [15]
    SHEN Y, SHIOZAWA T, AUSTIN P, et al. Model study of the effect of bird's nest on transport phenomena in the raceway of an ironmaking blast furnace[J]. Minerals Engineering, 2014, 63(Complete):91-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232799705
    [16]
    JAMALUDDIN A S, WALL T F, TRUELOVE J S. Combustion of pulverized coal as a tuyère-injectant to the blast furnace[J]. Symposium on Combustion, 1988, 21(1):575-584. http://www.sciencedirect.com/science/article/pii/S008207848880287X
    [17]
    FENG Y Q, PINSON D, YU A B, et al. Numerical study of gas-solid flow in the raceway of a blast furnace[J]. Steel Research International, 2003, 74(9):523-530. doi: 10.1002/srin.2003.74.issue-9
    [18]
    KOBAYASHI H, HOWARD J B, SAROFIM A F. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1):411-425. doi: 10.1016/S0082-0784(77)80341-X
    [19]
    UBHAYAKAR S K, STICKLER D B, JR C W V R, et al. Rapid devolatilization of pulverized coal in hot combustion gases[J].Symposium on Combustion, 1977, 16(1):427-436. doi: 10.1016/S0082-0784(77)80342-1
    [20]
    MAGNUSSEN B F, HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium on Combustion, 1977, 16(1):719-729. doi: 10.1016/S0082-0784(77)80366-4
    [21]
    WAKAO N, KAGUEI S, FUNAZKRI T. Effect of fluid dispersion coefficients on particle-to-fluid heat-transfer coefficients in packed-beds-correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3):325-36. doi: 10.1016/0009-2509(79)85064-2
    [22]
    FIELD M A. Combustion of pulverised coal[M]. UK:British Coal Utilisation Research Association, 1967.
    [23]
    SHEN Y, GUO B, YU A, et al. Three-dimensional modelling of coal combustion in blast furnace[J]. Isij International, 2008, 48(6):777-786. doi: 10.2355/isijinternational.48.777
    [24]
    TAKEDA K, LOCKWOOD F C. Integrated mathematical model of pulverised coal combustion in a blast furnance[J]. Isij International, 1997, 37(5):432-440. doi: 10.2355/isijinternational.37.432
    [25]
    YEH C P, DU S W, TSAI C H, et al. Numerical analysis of flow and combustion behavior in tuyere and raceway of blast furnace fueled with pulverized coal and recycled top gas[J]. Energy, 2012, 42(1):233-240. doi: 10.1016/j.energy.2012.03.065
  • Related Articles

    [1]LIU Hangchen, CHEN Haiting, LIU Ruohan, ZHAO Pengbo, ZHAO Zhipeng, LIU Junqi, HU Hao. First-principles design of cation-doped H-Nb2O5 negative electrode material and its electrochemical performance investigation[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 732-739. DOI: 10.13264/j.cnki.ysjskx.2024.05.013
    [2]LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008
    [3]LIU Zhijun, PENG Wanwan, LI Zhifeng, WANG Chunxiang, ZHANG Qian, ZHONG Shengwen. Effect of niobium doping on the electrochemical performance of nickel-based cathode materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 89-96. DOI: 10.13264/j.cnki.ysjskx.2020.02.013
    [4]LUO Linshan, LIU Wenwen, WEN Xiaoqiang, ZHANG Fan, ZHOU Xinhua, GUO Chunping, ZHOU Youchi, PU Jian. Effect of La doping on the structure and electrochemical properties of layered Li-rich Mn-based oxide cathode materials[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 104-110. DOI: 10.13264/j.cnki.ysjskx.2019.03.018
    [5]LAI Jianghong, ZHONG Shengwen, GUO Jinkang, LYU Qingwen, LUO Chuiyi, LI Dong. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 cathode materials[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 68-72. DOI: 10.13264/j.cnki.ysjskx.2017.04.012
    [6]LIU Xilin, ZhONG Shengwen, MEI Wenjie, CHEN Peng, JIN Zhu, WANG Chunxiang. Synthesis and properties of Li1.07(Ni0.4Mn0.531-xAlxO2 as cathode materials for lithium ion batteries[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 63-68. DOI: 10.13264/j.cnki.ysjskx.2015.05.012
    [7]Yin Zhuang, Zhou Hongwei, Ding Xianan, Yan Gang, Xin Qin, Wang Xindong. Synthesis and performance study of one-dimensional LiNi1/3Co1/3Mn1/3O2 nanofiber prepared by electrospinning[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 32-36. DOI: 10.13264/j.cnki.ysjskx.2015.02.006
    [8]ZHONG Sheng-wen, ZHONG Feng-di, ZHANG Qian. Synthesis and Al-doping properties of lithium-ion cathode materials LiNi0.5Mn0.3Co0.2O2[J]. Nonferrous Metals Science and Engineering, 2013, 4(4): 11-16. DOI: 10.13264/j.cnki.ysjskx.2013.04.002
    [9]ZHONG Sheng-wen, FENG Zhi-fang, XIE Min. Synthesis and Performances of Li (Mn1/3Ni1/3Co1/3)O2 as the AA Type of Lithium-ion Batteries by Melting Salt[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 9-13.
    [10]LIAO Chun-fa, CHEN Hui-huang, CHEN Zi-ping. Influence of Doping Rare Earth on the LiCoO2 as Lithium-ion Positive Material[J]. Nonferrous Metals Science and Engineering, 2004, 18(2): 33-37.

Catalog

    Article Metrics

    Article views (106) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return