Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WU Junming, ZHOU Zhenfeng, PENG Xing, WANG Jingsong, XUE Qingguo. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2018.04.001
Citation: WU Junming, ZHOU Zhenfeng, PENG Xing, WANG Jingsong, XUE Qingguo. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2018.04.001

Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace

More Information
  • Received Date: May 06, 2018
  • Published Date: August 30, 2018
  • The top gas recycling oxygen blast furnace is a new iron making process that can effectively increase the coal ratio and reduce carbon dioxide emissions. However, the complex combustion conditions will make the combustion of coal in the raceway and the behavior of the lower part of the blast furnace change greatly. In order to understand the complicated phenomenon of pulverized coal injection under the new oxygen blast furnace process, a three-dimensional CFD model has been developed to simulate oxygen coal lance-blowpipe-tuyere-raceway-coke bed of oxygen blast furnace. The temperature field, the concentration field and the flow and combustion characteristics of pulverized coal were investigated. The results indicate that the temperature is significantly increased, the high temperature area is enlarged, and the carbon dioxide content is increased of the raceway under the oxygen blast furnace. And the carbon monoxide content in the coke bed increased significantly. In addition, the coal burnout increased by 10.24% compared to that of the TBF.
  • [1]
    HO C K, WU S M, ZHU H P, et al. Experimental and numerical investigations of gouge formation related to blast furnace burden distribution[J]. Minerals Engineering, 2009, 22(11):986-994. doi: 10.1016/j.mineng.2009.03.004
    [2]
    ISHII K. Advanced pulverized coal injection technology and blast furnace operation[M]. NewYork:Pergamon Pr, 2000.
    [3]
    税烺, 贺东风, 艾立翔, 等.冶金生产余能回收的一种新的能量分析法[J].有色金属科学与工程, 2012, 3(1):43-48. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201010
    [4]
    MATHIESON J G, TRUELOVE J S, ROGERS H. Toward an understanding of coal combustion in blast furnace tuyere injection[J]. Fuel, 2005, 84(10):1229-1237. doi: 10.1016/j.fuel.2004.06.036
    [5]
    王文泽, 湛文龙, 刘肖, 等.高炉入炉焦炭高温反应特性的研究[J].有色金属科学与工程, 2014, 5(1):9-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201401002
    [6]
    QIN M S, QI B. The full oxygen blast furnace (FOBF) process[C]//IISC The Sixth International Iron and Steel Congress.1990:589-595.
    [7]
    QIN M, GAO Z, WANG G, et al. Blast furnace operation with full oxygen blast[J]. Ironmaking & Steelmaking, 1988(6):287-292. http://d.old.wanfangdata.com.cn/Periodical/gtyjxb-e201708003
    [8]
    蓝荣宗, 王静松, 韩毅华, 等.高还原势气氛下烧结矿低温还原粉化试验研究[J].有色金属科学与工程, 2012, 3(1):5-9. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201201002
    [9]
    MURAI R, SATO M, ARIYAMA T. Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling[J]. Transactions of the Iron & Steel Institute of Japan, 2004, 44(12):2168-2177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0212116405
    [10]
    DU S W, YEH C P, CHEN W H, et al. Burning characteristics of pulverized coal within blast furnace raceway at various injection operations and ways of oxygen enrichment[J]. Fuel, 2015, 143(1427):98-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234326820
    [11]
    ZHOU Z, XUE Q, TANG H, et al. Coal combustion behavior in new ironmaking process of top gas recycling oxygen blast furnace[J]. JOM, 2017, 69(10):1790-1794. doi: 10.1007/s11837-017-2515-3
    [12]
    SHEN Y S, GUO B Y, YU A B, et al. Three-dimensional modelling of in-furnace coal/coke combustion in a blast furnace[J]. Fuel, 2011, 90(2):728-738. doi: 10.1016/j.fuel.2010.08.030
    [13]
    SHEN Y S, YU A B, AUSTIN P R, et al. CFD study of in-furnace phenomena of pulverised coal injection in blast furnace: Effects of operating conditions[J]. Powder Technology, 2012, 223(6):27-38. http://www.sciencedirect.com/science/article/pii/S0032591011003433
    [14]
    SHEN Y, YU A, AUSTIN P, et al. Modelling in-furnace phenomena of pulverized coal injection in ironmaking blast furnace: effect of coke bed porosities[J]. Minerals Engineering, 2012, 33(6):54-65. http://www.sciencedirect.com/science/article/pii/S0892687511003815
    [15]
    SHEN Y, SHIOZAWA T, AUSTIN P, et al. Model study of the effect of bird's nest on transport phenomena in the raceway of an ironmaking blast furnace[J]. Minerals Engineering, 2014, 63(Complete):91-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232799705
    [16]
    JAMALUDDIN A S, WALL T F, TRUELOVE J S. Combustion of pulverized coal as a tuyère-injectant to the blast furnace[J]. Symposium on Combustion, 1988, 21(1):575-584. http://www.sciencedirect.com/science/article/pii/S008207848880287X
    [17]
    FENG Y Q, PINSON D, YU A B, et al. Numerical study of gas-solid flow in the raceway of a blast furnace[J]. Steel Research International, 2003, 74(9):523-530. doi: 10.1002/srin.2003.74.issue-9
    [18]
    KOBAYASHI H, HOWARD J B, SAROFIM A F. Coal devolatilization at high temperatures[J]. Symposium on Combustion, 1977, 16(1):411-425. doi: 10.1016/S0082-0784(77)80341-X
    [19]
    UBHAYAKAR S K, STICKLER D B, JR C W V R, et al. Rapid devolatilization of pulverized coal in hot combustion gases[J].Symposium on Combustion, 1977, 16(1):427-436. doi: 10.1016/S0082-0784(77)80342-1
    [20]
    MAGNUSSEN B F, HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium on Combustion, 1977, 16(1):719-729. doi: 10.1016/S0082-0784(77)80366-4
    [21]
    WAKAO N, KAGUEI S, FUNAZKRI T. Effect of fluid dispersion coefficients on particle-to-fluid heat-transfer coefficients in packed-beds-correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3):325-36. doi: 10.1016/0009-2509(79)85064-2
    [22]
    FIELD M A. Combustion of pulverised coal[M]. UK:British Coal Utilisation Research Association, 1967.
    [23]
    SHEN Y, GUO B, YU A, et al. Three-dimensional modelling of coal combustion in blast furnace[J]. Isij International, 2008, 48(6):777-786. doi: 10.2355/isijinternational.48.777
    [24]
    TAKEDA K, LOCKWOOD F C. Integrated mathematical model of pulverised coal combustion in a blast furnance[J]. Isij International, 1997, 37(5):432-440. doi: 10.2355/isijinternational.37.432
    [25]
    YEH C P, DU S W, TSAI C H, et al. Numerical analysis of flow and combustion behavior in tuyere and raceway of blast furnace fueled with pulverized coal and recycled top gas[J]. Energy, 2012, 42(1):233-240. doi: 10.1016/j.energy.2012.03.065
  • Cited by

    Periodical cited type(5)

    1. 刘欢,张元生,兰大伟,张建良,刘旭,王治宇. 高炉风口喷吹煤粉的燃烧模拟研究. 中国资源综合利用. 2024(08): 23-29 .
    2. 季朗永,范海瀚,翁凌熠,苏中方,崔佳鑫,鄂殿玉. 高炉批重转换过程炉内热化学行为演变规律模拟研究. 有色金属科学与工程. 2023(06): 764-772 . 本站查看
    3. 辛渊. 数学模型在高炉炼铁领域应用现状的研究. 冶金管理. 2022(09): 31-33 .
    4. 薛庆国,杨帆,张欣欣,王静松,左海滨,姜泽毅,佘雪峰,王广. 氧气高炉的发展历程及其在北京科技大学的研究进展. 工程科学学报. 2021(12): 1579-1591 .
    5. 徐震,潘玉柱,王彬旭,王静松,薛庆国. 高炉内不同还原度炉料对软熔带透气性的影响. 江西冶金. 2019(03): 1-7 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (106) PDF downloads (5) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return