Citation: | LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008 |
[1] |
HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. doi: 10.1016/j.jpowsour.2013.03.024
|
[2] |
曾敏, 钟盛文, 张骞, 等.富锂锰基正极材料动力锂离子电池的倍率性能[J].电池, 2015, 45(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201501007.htm
|
[3] |
HU G R, XUE Z C, LUO Z Y, et al. Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery[J]. Ceramics International, 2019, 45(8): 10633-10639. http://www.sciencedirect.com/science/article/pii/S027288421930433X
|
[4] |
TAI Z, ZHU W, SHI M, et al. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 576: 468-475. doi: 10.1016/j.jcis.2020.05.015
|
[5] |
ZHU Y, ZHANG N, ZHAO L, et al. Improving electrochemical performance of lithium-rich cathode material Li1.2Mn0.52Ni0.13Co0.13W0.02O2 coated with Li2WO4 for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 811: 152023. doi: 10.1016/j.jallcom.2019.152023
|
[6] |
程波明, 杨金猛, 刘宝禄, 等.烧结温度对LiNi0.8Co0.15Al0.05O2结构和电化学性能的影响[J].有色金属科学与工程, 2018, 9(4): 47-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804008
|
[7] |
ZHANG Y Z, LIU Z H, WANG Z, et al. Electrochemical impedance spectroscopy study of lithium-rich material 0.5Li2 MnO3·0.5Li Ni1/3Co1/3Mn1/3O2 in the first two charge-discharge cycles[J]. Electrochimica Acta, 2019, 310: 136-145. doi: 10.1016/j.electacta.2019.04.112
|
[8] |
李栋, 雷超, 赖华, 等.全固态锂离子电池正极与石榴石型固体电解质界面的研究进展[J].无机材料学报, 2019, 34(7): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201907002.htm
|
[9] |
TAI Z G, LI X L, ZHU W, et al. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 570: 264-272. doi: 10.1016/j.jcis.2020.03.005
|
[10] |
CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165. http://www.sciencedirect.com/science/article/pii/S2211285518309625
|
[11] |
ZOU W, XIA F J, SONG J P, et al. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2019, 318: 875-882. doi: 10.1016/j.electacta.2019.06.119
|
[12] |
李栋, 赖华, 罗诗健, 等.富锂锰基层状正极材料的表面包覆改性[J].硅酸盐学报, 2017, 45(7): 904-915. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201707004.htm
|
[13] |
SHI S J, TU J P, MAI Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2012, 63(63): 112-117.
|
[14] |
钟盛文, 梅文捷, 李栋, 等.富锂正极材料Li1+x[Ni0.36Mn0.64](1-x)O2的制备及电化学性能研究[J].材料导报, 2015, 29(12): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201512003.htm
|
[15] |
LI M, WANG H Y, ZHAO L M, et al. Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-doping[J]. Journal of Alloys and Compounds, 2019, 782: 451-460. doi: 10.1016/j.jallcom.2018.12.072
|
[16] |
DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185. doi: 10.1016/j.jpowsour.2020.228185
|
[17] |
XU M, CHEN Z Y, ZHU H L, et al. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials[J]. Journal of Materials Chemistry A, 2015, 3(26): 13933-13945. http://pubs.rsc.org/en/content/articlepdf/2015/ta/c5ta03676c
|
[18] |
邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能[J].有色金属科学与工程, 2018, 9(5): 21-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805005
|
[19] |
KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys and Compounds, 2012, 517: 20-25. http://www.sciencedirect.com/science/article/pii/S0925838811022043
|
[20] |
兰超波, 张骞, 邱世涛, 等. LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J].有色金属科学与工程, 2019, 10(4): 72-77. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904012
|
[21] |
JIANG X, WU B, YANG X K, et al. Multiple regulation of surface engineering for lithium-rich layered cathode materials via one-step strategy[J]. Electrochimica Acta, 2019, 325: 134951. http://www.sciencedirect.com/science/article/pii/S0013468619318225
|
[22] |
LI J L, CAO C B, XU X Y, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 38(1): 11848. http://www.ingentaconnect.com/content/rsoc/20507488/2013/00000001/00000038/art00047
|
[23] |
SCHIPPER F, DIXIT M, KOVACHEVA D, et al.Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41): 16073-16084. http://www.ingentaconnect.com/content/rsoc/20507488/2016/00000004/00000041/art00037
|
[24] |
WU C, ZHU Y, DING M, et al. Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes[J]. Electrochimica Acta, 2018, 291: 249-255. http://www.sciencedirect.com/science/article/pii/S001346861831898X
|
[1] | LEI Yu, HU Xinbo, ZHU Chuncheng, XU Qian, SUN Chenteng, ZOU Xingli, CHENG Hongwei, LU Xionggang. Mechanism of ultrasound-assisted replacement for copper removal based on products morphology[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 180-188. DOI: 10.13264/j.cnki.ysjskx.2024.02.004 |
[2] | FANG Xihui, ZHANG Cun1, XIA Yanyuan. Different factors on flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114. DOI: 10.13264/j.cnki.ysjskx.2016.06.0019 |
[3] | LI Liyuan, NIE Qingmin, ZHONG Jianfeng, AI Guanghua. Experimental study on a high grade molybdenum-bismuth sulfide ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 85-90. DOI: 10.13264/j.cnki.ysjskx.2016.04.015 |
[4] | SHI Guiming, ZHAO Ruquan, ZHOU Yichao. Flotation of a very low grade platinum-copper-nickel ore in Sichuan[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2016.02.019 |
[5] | OU Le-ming, GENG Shao-pei, FENG Qi-ming. Ultrasonic used in foaming and the effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 80-84. DOI: 10.13264/j.cnki.ysjskx.2015.05.015 |
[6] | QIU Tingsheng, YAN Huashan, AI Guanghua, QIU Xianhui. Test study of improving copper sorting index by flash flotation[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 106-110. DOI: 10.13264/j.cnki.ysjskx.2014.05.020 |
[7] | Zeng Qingyun, ZHANG Yong, SHUAI Gengwei. Application advances of microwave and ultrasonic in tungsten metallurgy[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 15-19. DOI: 10.13264/j.cnki.ysjskx.2014.02.003 |
[8] | ZHANG Xing-wang, HUANG Xiao-yi, LAI Hong-wei. Study on floc-flotation of fine molybdenite particles[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 65-68. DOI: 10.13264/j.cnki.ysjskx.2012.06.013 |
[9] | ZHU Wen-long, HUANG Wan-fu. Experimental Study on the Beneficiation Process for a Copper -tungsten -molybdenum Ore from Jiangxi[J]. Nonferrous Metals Science and Engineering, 2010, 24(2): 13-18. |
[10] | XU Ji-hui. Geological Research on the Fourth Molybdenum Deposit of Jiangxi Chengmenshan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 10-12. |