Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008
Citation: LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008

Li-rich manganese layered cathode materials doped with W

More Information
  • Received Date: July 19, 2020
  • Published Date: December 30, 2020
  • Lithium-rich manganese materials have high specific capacity and charge-discharge voltage platform, but large irreversible capacity. The bonding between transition metals and oxygen was enhanced by W doping in lithium-rich manganese cathode materials, with inhibited lattice oxygen shedding during the first charge-discharge process. Meanwhile, XRD refinement results showed that W-doping increased the interlayer spacing of lithium-rich manganese layered materials, promoted the diffusion of lithium ions, reduced the electrochemical impedance of materials, with an effective improvement of the cycle stability and rate performance of materials. Electrochemical tests show that the performance is the most favorable when W is doped at 3%, and the discharge specific capacities at 0.2 C, 3 C and 5 C are 211.3 mAh/g, 132.6 mAh/g and 114.61 mAh/g, respectively, which are 10.5%, 7.8% and 12.58% higher than those of undoped lithium-rich manganese materials.
  • [1]
    HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. doi: 10.1016/j.jpowsour.2013.03.024
    [2]
    曾敏, 钟盛文, 张骞, 等.富锂锰基正极材料动力锂离子电池的倍率性能[J].电池, 2015, 45(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201501007.htm
    [3]
    HU G R, XUE Z C, LUO Z Y, et al. Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery[J]. Ceramics International, 2019, 45(8): 10633-10639. http://www.sciencedirect.com/science/article/pii/S027288421930433X
    [4]
    TAI Z, ZHU W, SHI M, et al. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 576: 468-475. doi: 10.1016/j.jcis.2020.05.015
    [5]
    ZHU Y, ZHANG N, ZHAO L, et al. Improving electrochemical performance of lithium-rich cathode material Li1.2Mn0.52Ni0.13Co0.13W0.02O2 coated with Li2WO4 for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 811: 152023. doi: 10.1016/j.jallcom.2019.152023
    [6]
    程波明, 杨金猛, 刘宝禄, 等.烧结温度对LiNi0.8Co0.15Al0.05O2结构和电化学性能的影响[J].有色金属科学与工程, 2018, 9(4): 47-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804008
    [7]
    ZHANG Y Z, LIU Z H, WANG Z, et al. Electrochemical impedance spectroscopy study of lithium-rich material 0.5Li2 MnO3·0.5Li Ni1/3Co1/3Mn1/3O2 in the first two charge-discharge cycles[J]. Electrochimica Acta, 2019, 310: 136-145. doi: 10.1016/j.electacta.2019.04.112
    [8]
    李栋, 雷超, 赖华, 等.全固态锂离子电池正极与石榴石型固体电解质界面的研究进展[J].无机材料学报, 2019, 34(7): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201907002.htm
    [9]
    TAI Z G, LI X L, ZHU W, et al. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 570: 264-272. doi: 10.1016/j.jcis.2020.03.005
    [10]
    CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165. http://www.sciencedirect.com/science/article/pii/S2211285518309625
    [11]
    ZOU W, XIA F J, SONG J P, et al. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2019, 318: 875-882. doi: 10.1016/j.electacta.2019.06.119
    [12]
    李栋, 赖华, 罗诗健, 等.富锂锰基层状正极材料的表面包覆改性[J].硅酸盐学报, 2017, 45(7): 904-915. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201707004.htm
    [13]
    SHI S J, TU J P, MAI Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2012, 63(63): 112-117.
    [14]
    钟盛文, 梅文捷, 李栋, 等.富锂正极材料Li1+x[Ni0.36Mn0.64](1-x)O2的制备及电化学性能研究[J].材料导报, 2015, 29(12): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201512003.htm
    [15]
    LI M, WANG H Y, ZHAO L M, et al. Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-doping[J]. Journal of Alloys and Compounds, 2019, 782: 451-460. doi: 10.1016/j.jallcom.2018.12.072
    [16]
    DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185. doi: 10.1016/j.jpowsour.2020.228185
    [17]
    XU M, CHEN Z Y, ZHU H L, et al. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials[J]. Journal of Materials Chemistry A, 2015, 3(26): 13933-13945. http://pubs.rsc.org/en/content/articlepdf/2015/ta/c5ta03676c
    [18]
    邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能[J].有色金属科学与工程, 2018, 9(5): 21-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805005
    [19]
    KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys and Compounds, 2012, 517: 20-25. http://www.sciencedirect.com/science/article/pii/S0925838811022043
    [20]
    兰超波, 张骞, 邱世涛, 等. LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J].有色金属科学与工程, 2019, 10(4): 72-77. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904012
    [21]
    JIANG X, WU B, YANG X K, et al. Multiple regulation of surface engineering for lithium-rich layered cathode materials via one-step strategy[J]. Electrochimica Acta, 2019, 325: 134951. http://www.sciencedirect.com/science/article/pii/S0013468619318225
    [22]
    LI J L, CAO C B, XU X Y, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 38(1): 11848. http://www.ingentaconnect.com/content/rsoc/20507488/2013/00000001/00000038/art00047
    [23]
    SCHIPPER F, DIXIT M, KOVACHEVA D, et al.Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41): 16073-16084. http://www.ingentaconnect.com/content/rsoc/20507488/2016/00000004/00000041/art00037
    [24]
    WU C, ZHU Y, DING M, et al. Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes[J]. Electrochimica Acta, 2018, 291: 249-255. http://www.sciencedirect.com/science/article/pii/S001346861831898X
  • Related Articles

    [1]LEI Yu, HU Xinbo, ZHU Chuncheng, XU Qian, SUN Chenteng, ZOU Xingli, CHENG Hongwei, LU Xionggang. Mechanism of ultrasound-assisted replacement for copper removal based on products morphology[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 180-188. DOI: 10.13264/j.cnki.ysjskx.2024.02.004
    [2]FANG Xihui, ZHANG Cun1, XIA Yanyuan. Different factors on flotation separation kinetics of chalcopyrite and pyrite[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 110-114. DOI: 10.13264/j.cnki.ysjskx.2016.06.0019
    [3]LI Liyuan, NIE Qingmin, ZHONG Jianfeng, AI Guanghua. Experimental study on a high grade molybdenum-bismuth sulfide ore[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 85-90. DOI: 10.13264/j.cnki.ysjskx.2016.04.015
    [4]SHI Guiming, ZHAO Ruquan, ZHOU Yichao. Flotation of a very low grade platinum-copper-nickel ore in Sichuan[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2016.02.019
    [5]OU Le-ming, GENG Shao-pei, FENG Qi-ming. Ultrasonic used in foaming and the effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 80-84. DOI: 10.13264/j.cnki.ysjskx.2015.05.015
    [6]QIU Tingsheng, YAN Huashan, AI Guanghua, QIU Xianhui. Test study of improving copper sorting index by flash flotation[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 106-110. DOI: 10.13264/j.cnki.ysjskx.2014.05.020
    [7]Zeng Qingyun, ZHANG Yong, SHUAI Gengwei. Application advances of microwave and ultrasonic in tungsten metallurgy[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 15-19. DOI: 10.13264/j.cnki.ysjskx.2014.02.003
    [8]ZHANG Xing-wang, HUANG Xiao-yi, LAI Hong-wei. Study on floc-flotation of fine molybdenite particles[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 65-68. DOI: 10.13264/j.cnki.ysjskx.2012.06.013
    [9]ZHU Wen-long, HUANG Wan-fu. Experimental Study on the Beneficiation Process for a Copper -tungsten -molybdenum Ore from Jiangxi[J]. Nonferrous Metals Science and Engineering, 2010, 24(2): 13-18.
    [10]XU Ji-hui. Geological Research on the Fourth Molybdenum Deposit of Jiangxi Chengmenshan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 10-12.

Catalog

    Article Metrics

    Article views (153) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return