Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008
Citation: LIU Zhiliang, LI Xiaolin, LEI Chao, LI Dong, WANG Chunxiang, CHEN Jingbo, ZHONG Shengwen. Li-rich manganese layered cathode materials doped with W[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 57-63. DOI: 10.13264/j.cnki.ysjskx.2020.06.008

Li-rich manganese layered cathode materials doped with W

More Information
  • Received Date: July 19, 2020
  • Published Date: December 30, 2020
  • Lithium-rich manganese materials have high specific capacity and charge-discharge voltage platform, but large irreversible capacity. The bonding between transition metals and oxygen was enhanced by W doping in lithium-rich manganese cathode materials, with inhibited lattice oxygen shedding during the first charge-discharge process. Meanwhile, XRD refinement results showed that W-doping increased the interlayer spacing of lithium-rich manganese layered materials, promoted the diffusion of lithium ions, reduced the electrochemical impedance of materials, with an effective improvement of the cycle stability and rate performance of materials. Electrochemical tests show that the performance is the most favorable when W is doped at 3%, and the discharge specific capacities at 0.2 C, 3 C and 5 C are 211.3 mAh/g, 132.6 mAh/g and 114.61 mAh/g, respectively, which are 10.5%, 7.8% and 12.58% higher than those of undoped lithium-rich manganese materials.
  • [1]
    HU M, PANG X L, ZHOU Z. Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. doi: 10.1016/j.jpowsour.2013.03.024
    [2]
    曾敏, 钟盛文, 张骞, 等.富锂锰基正极材料动力锂离子电池的倍率性能[J].电池, 2015, 45(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201501007.htm
    [3]
    HU G R, XUE Z C, LUO Z Y, et al. Improved cycling performance of CeO2-inlaid Li-rich cathode materials for lithium-ion battery[J]. Ceramics International, 2019, 45(8): 10633-10639. http://www.sciencedirect.com/science/article/pii/S027288421930433X
    [4]
    TAI Z, ZHU W, SHI M, et al. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li3PO4 as cathode material for Lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 576: 468-475. doi: 10.1016/j.jcis.2020.05.015
    [5]
    ZHU Y, ZHANG N, ZHAO L, et al. Improving electrochemical performance of lithium-rich cathode material Li1.2Mn0.52Ni0.13Co0.13W0.02O2 coated with Li2WO4 for lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 811: 152023. doi: 10.1016/j.jallcom.2019.152023
    [6]
    程波明, 杨金猛, 刘宝禄, 等.烧结温度对LiNi0.8Co0.15Al0.05O2结构和电化学性能的影响[J].有色金属科学与工程, 2018, 9(4): 47-52. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201804008
    [7]
    ZHANG Y Z, LIU Z H, WANG Z, et al. Electrochemical impedance spectroscopy study of lithium-rich material 0.5Li2 MnO3·0.5Li Ni1/3Co1/3Mn1/3O2 in the first two charge-discharge cycles[J]. Electrochimica Acta, 2019, 310: 136-145. doi: 10.1016/j.electacta.2019.04.112
    [8]
    李栋, 雷超, 赖华, 等.全固态锂离子电池正极与石榴石型固体电解质界面的研究进展[J].无机材料学报, 2019, 34(7): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL201907002.htm
    [9]
    TAI Z G, LI X L, ZHU W, et al. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 570: 264-272. doi: 10.1016/j.jcis.2020.03.005
    [10]
    CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57: 157-165. http://www.sciencedirect.com/science/article/pii/S2211285518309625
    [11]
    ZOU W, XIA F J, SONG J P, et al. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2019, 318: 875-882. doi: 10.1016/j.electacta.2019.06.119
    [12]
    李栋, 赖华, 罗诗健, 等.富锂锰基层状正极材料的表面包覆改性[J].硅酸盐学报, 2017, 45(7): 904-915. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201707004.htm
    [13]
    SHI S J, TU J P, MAI Y J, et al. Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2012, 63(63): 112-117.
    [14]
    钟盛文, 梅文捷, 李栋, 等.富锂正极材料Li1+x[Ni0.36Mn0.64](1-x)O2的制备及电化学性能研究[J].材料导报, 2015, 29(12): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201512003.htm
    [15]
    LI M, WANG H Y, ZHAO L M, et al. Improving the electrochemical performance of lithium-rich oxide layer material with Mg and La co-doping[J]. Journal of Alloys and Compounds, 2019, 782: 451-460. doi: 10.1016/j.jallcom.2018.12.072
    [16]
    DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185. doi: 10.1016/j.jpowsour.2020.228185
    [17]
    XU M, CHEN Z Y, ZHU H L, et al. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials[J]. Journal of Materials Chemistry A, 2015, 3(26): 13933-13945. http://pubs.rsc.org/en/content/articlepdf/2015/ta/c5ta03676c
    [18]
    邱世涛, 钟盛文, 李婷婷, 等. Cu掺杂LiNi0.6Co0.2Mn0.2O2的电化学性能[J].有色金属科学与工程, 2018, 9(5): 21-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805005
    [19]
    KIM J H, PARK M S, SONG J H, et al. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material[J]. Journal of Alloys and Compounds, 2012, 517: 20-25. http://www.sciencedirect.com/science/article/pii/S0925838811022043
    [20]
    兰超波, 张骞, 邱世涛, 等. LiNi0.5Co0.2Mn0.3O2正极材料的高电压研究[J].有色金属科学与工程, 2019, 10(4): 72-77. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201904012
    [21]
    JIANG X, WU B, YANG X K, et al. Multiple regulation of surface engineering for lithium-rich layered cathode materials via one-step strategy[J]. Electrochimica Acta, 2019, 325: 134951. http://www.sciencedirect.com/science/article/pii/S0013468619318225
    [22]
    LI J L, CAO C B, XU X Y, et al. LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 38(1): 11848. http://www.ingentaconnect.com/content/rsoc/20507488/2013/00000001/00000038/art00047
    [23]
    SCHIPPER F, DIXIT M, KOVACHEVA D, et al.Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41): 16073-16084. http://www.ingentaconnect.com/content/rsoc/20507488/2016/00000004/00000041/art00037
    [24]
    WU C, ZHU Y, DING M, et al. Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes[J]. Electrochimica Acta, 2018, 291: 249-255. http://www.sciencedirect.com/science/article/pii/S001346861831898X
  • Related Articles

    [1]GENG Yajie, LI Jiaheng, MENG Xianjin, HE Ziguang, FANG Qiancheng. Research on GRA-TOPSIS evaluation model for slope stability of open pit mines based on variable weight theory[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 553-560. DOI: 10.13264/j.cnki.ysjskx.2024.04.010
    [2]WANG Jun’an, ZHONG Shengwen, YUE Bo, HUANG Xiaoli, CHEN Wei, WEI Xingquan, ZENG Min, LIU Jingjing, WEN Guanjun. Preparation technology and properties of modified single-crystalline LiNi0.83Co0.12Mn0.05O2 cathode materials by doping and coating[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 808-815. DOI: 10.13264/j.cnki.ysjskx.2023.06.008
    [3]LAI Fulin, WANG Yuqin, MA Quanxin, ZHOU Lingfei, YANG Mengqian, ZHONG Shengwen, Dmytro Sydorov. Preoxidation of Ni0.8Co0.17Al0.03(OH)2 with LiClO4 to improve cycle stability of lithium-ion batteries[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 57-66. DOI: 10.13264/j.cnki.ysjskx.2023.01.008
    [4]HUANG Xiangyun, HE Lei, ZENG Liangliang, DU Chang, QU Pengpeng, ZHOU Toujun, YU Xiaoqiang, ZHONG Zhenchen, LI Jiajie. Effect of grain boundary diffusion Dy60Co35Ga5 alloys on magnetic properties and thermal stability of sintered NdFeB magnets[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 104-109. DOI: 10.13264/j.cnki.ysjskx.2019.02.015
    [5]LIU Wenbing, LI Liang, LIU Guicheng, WANG Xindong. Research progress on stability of perovskite solar cells[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 31-42. DOI: 10.13264/j.cnki.ysjskx.2017.02.006
    [6]HUANG Yonggang, RAO Yunzhang, LI Yong. On line monitoring and evaluation of filling system stability[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 121-126. DOI: 10.13264/j.cnki.ysjskx.2016.04.021
    [7]RAO Yunzhang, ZHANG Xueyan. Based on logistic regression model to determine the weight fuzzy comprehensive evaluation method in the application of the slope stability analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 111-115. DOI: 10.13264/j.cnki.ysjskx.2015.06.020
    [8]CHENG Qiuting, DENG Fei, CHEN Yanhong, XIA Yijiang, WANG Xiaojun. Numerical simulation analysis on the stability of mined-out area[J]. Nonferrous Metals Science and Engineering, 2015, (2): 85-88. DOI: 10.13264/j.cnki.ysjskx.2015.02.016
    [9]Lin Guohong. Stability classification of filling body's base plate based on ANSYS and GeoStudio coupling[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 91-95. DOI: 10.13264/j.cnki.ysjskx.2014.03.017
    [10]REN Jin_xia, HUANG Yun_qiang. Stability Analysis of Automatic Control System Using MATLAB[J]. Nonferrous Metals Science and Engineering, 2002, 16(3): 43-45.
  • Cited by

    Periodical cited type(6)

    1. 张清,何毅,陈学业,高秉海,张立峰,赵占骜,路建刚,张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价. 中国地质灾害与防治学报. 2024(04): 146-162 .
    2. 邵彦斌,陈尚波,王清和,刘珮勋,虞松涛,李佳. 暴雨洪水诱发地下钨矿灾害链式演化及风险分析. 有色金属科学与工程. 2024(05): 750-757 . 本站查看
    3. 林沛文,何书,鲜木斯艳·阿布迪克依木,叶祉. 基于逻辑回归-模糊层次分析模型的公路沿线滑坡易发性评价. 自然灾害学报. 2024(06): 27-36 .
    4. 臧烨祺,郭永刚,苏立彬,王国闻,吴升杰,秦得顺. 西藏东南地区滑坡易发性多模型评价方法研究. 中国地质灾害与防治学报. 2024(06): 58-69 .
    5. 胡杨,张紫昭,林世河. 基于证据权与逻辑回归耦合的新疆伊犁河谷地区滑坡易发性评价. 工程地质学报. 2023(04): 1350-1363 .
    6. 孙晨昊,郑逸榛,李俊斌,霍姝涵. 基于稀疏表达重构误差模型的小区域滑坡易发性评价. 资源环境与工程. 2022(05): 614-624 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (153) PDF downloads (3) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return