Citation: | YU Rong-min. Technology of extracting scandium in the comprehensive recovery of red mud-titanium white waste acid[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 31-35. DOI: 10.13264/j.cnki.ysjskx.2017.04.006 |
[1] |
李亮星, 宋祥莉, 黄茜琳.含钪废料的回收处理方法[J].江西有色金属, 2008, 22(2): 23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZS200901019.htm
|
[2] |
WANG W W, PRANOLO Y, CHENG C Y. Metallurgical processes for scandium recovery from various resources: A review[J]. Hydrometallurgy, 2011, 108(1-2): 100-108. doi: 10.1016/j.hydromet.2011.03.001
|
[3] |
ZHANG N, LI H X, LIU X M. Recovery of scandium from bauxite residue-red mud: a review[J]. Rare Metals, 2016, 35(12): 887-900. doi: 10.1007/s12598-016-0805-5
|
[4] |
杨海琼, 董海刚, 赵家春, 等.钪的回收技术研究进展[J].有色金属(冶炼部分), 2014(3): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-METE201403010.htm
|
[5] |
JAYASHREE B, SUNIL G, HARISH J P, et al. Synthesis, characterization, neutron activation, and application of scandium oxide microsphere in radioactive particle tracking experiments[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 3-12. doi: 10.1021/acs.iecr.5b02261?src=recsys
|
[6] |
LIAC H, CAOA F, GUOA S, et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition[J]. Journal of Alloys and Compounds, 2017, 691: 482-488. doi: 10.1016/j.jallcom.2016.08.255
|
[7] |
BIEKE O, KOEN B. Recovery of scandium(Ⅲ) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Industrial & Engineering Chemistry Research, 2015, 54(6): 1887-1898. doi: 10.1021/ie504765v?src=recsys
|
[8] |
司秀芬, 邓佐国, 徐廷华.赤泥提抗综述[J].江西有色金属, 2003, 17(2): 28-31.
|
[9] |
WANG W, PRANOLO Y, CHENG C Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation and Purification Technology, 2013, 108: 96-102. doi: 10.1016/j.seppur.2013.02.001
|
[10] |
钟学明.伯胺萃取法提取氧化钪的工艺研究[J].稀有金属, 2002, 26(6): 527-529. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS200206039.htm
|
[11] |
徐廷华, 邓佐国, 李伟, 等.从钨渣浸出液中提取钪的研究[J].江西有色金属, 1997, 11(4): 32-36. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS199704009.htm
|
[12] |
ZHAO Z G, KUBOTA F, KAMIYA N, et al. Selective extraction of scandium from transition metals by synergistic extraction with 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide[J]. Solvent Extraction Research and Development, 2016, 23(2): 137-143. doi: 10.15261/serdj.23.137
|
[13] |
DENISOVA S A, GOLOVKINA A V, LESNOV A E. Extraction of scandium by diantipyrylalkanes from naphthalene-2-sulfonate solutions in the extraction systems of different types[J]. Journal of Analytical Chemistry, 2015, 70(2): 107-112. doi: 10.1134/S1061934815020033
|
[14] |
XU S Q, LI S Q. Review of the extractive metallurgy of scandium in China (1978~1991) [J]. Hydrometallurgy, 1996, 42(3): 337-343. doi: 10.1016/0304-386X(95)00086-V
|
[15] |
BIEKE O, CHENNA R B, TOM V G, et al. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Separation and Purification Technology, 2017, 176: 208-219. doi: 10.1016/j.seppur.2016.12.009
|
[16] |
TURANOV A N, KARANDASHEV V K, BAULIN V E, et al. Extraction of rare earths and scandium by 2-phosphorylphenoxyacetic acid amides in the presence of ionic liquids[J]. Russian Journal of Inorganic Chemistry, 2016, 61(3): 377-383. doi: 10.1134/S0036023616030232
|
[17] |
DEPUYDT D, DEHAEN W, BINNEMANS K. Solvent Extraction of Scandium(Ⅲ) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 8988-8996. doi: 10.1021/acs.iecr.5b01910?journalCode=iecred
|
[18] |
HSU C G, XU Q, PAN J M. Determination of trace scandium by ion-exchanger phase spectrophotometry with p-nitrochlorophosphonazo[J]. Microchimica Acta, 1997, 126(1-2): 83-86. doi: 10.1007/BF01242666
|
[19] |
MALGORZATA B, KRZYSZTOF M, JERZY K. Determination of aluminum, barium, molybdenum, scandium, berylium, titanium, vanadium, fluoride and boron in highly salinated waters[J]. Water Science & Technology, 2015, 33(6): 349-356. http://www.ingentaconnect.com/content/els/02731223/1996/00000033/00000006/art00286?format=ris
|
[20] |
MAHINDRAKAR A N, CHANDRA S, SHINDE L P. Chemical characterization of Al-Li alloys for scandium by hyphenated technique using ion exchange chromatography[J]. Asian Journal of Chemistry, 2009, 21(3): 1775-1780. http://www.asianjournalofchemistry.co.in/User/SearchArticle.aspx?Volume=21&Issue=3&Article=&Criteria=
|
[21] |
SHANG Q K, LI D Q, QI J X. Separation of scandium, yttrium and lanthanum in high-performance centrifugal partition chromatography with S-octyl phenyloxy acetic acid[J]. Journal of Solid State Chemistry, 2003, 171(1): 358-361. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100EUBC.TXT
|
[22] |
WANG C Z, ZHOU G Z, ZHENG Z L. Extraction of scandium from red mud using ELM with P204 as carrier[J]. Advanced Materials Research, 2012(602-604): 1116-1119. https://www.scientific.net/AMR.602-604.1116
|
[23] |
YANG X J, GU Z M, WANG D X. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane[J]. Journal of Membrane Science, 1995, 106(1): 131-145. http://www.ingentaconnect.com/content/els/03767388/1995/00000106/00000001/art00083
|
[1] | LI Yongming, QIAO Dengpan, YANG Tianyu, WANG Jun, SHI Renzhi, ZHANG Xi, LIAN Baidong, ZHENG Cong. Study on multiple factor interaction and parameter optimization of flocculation sedimentation of unclassified tailings slurry based on response surface method[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 901-910. DOI: 10.13264/j.cnki.ysjskx.2024.06.013 |
[2] | MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012 |
[3] | HOU Yifei, SUN Jian, BAI Ni, SUN Yongfen, JU Dianchun. Recovery of ZrO2 from zirconium-containing waste salt based on response surface methodology[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 26-34. DOI: 10.13264/j.cnki.ysjskx.2021.06.004 |
[4] | WU Zhiqiang, FANG Xin, TONG Jiaqi, LIAO Ningning, XU Jindong, WU Caibin. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2019.05.014 |
[5] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[6] | CHEN Guoliang, HUANG Yonggang, SHAO Yajian, LI Xuezhen, RAO Yunzhang. Based on the response surface optimization method of a certain mine filling ratio optimization[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 73-76. DOI: 10.13264/j.cnki.ysjskx.2016.02.013 |
[7] | ZHU Quan, ZHANG Xiu-Zhi. The social responsibility driving force of rare-earth industry[J]. Nonferrous Metals Science and Engineering, 2012, 3(4): 82-86, 90. DOI: 10.13264/j.cnki.ysjskx.2012.04.005 |
[8] | XU Bing-liang, SUN Li-jun, LIU Dian-wen. The Optimization of the Flotation Process of Ilmenite by the Harmonic-mean Model of Multi-response Optimization Method[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 28-33,85. |
[9] | WANG Jian-ru, LIU Zu-wen, ZHU Qiang, XU Jian-hong. On the Factors Affecting the Phosephorus and Nitrogen Removal by Carrousel Oxidation Ditch Process[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 51-54. |
[10] | XIONG Zhen-xiu, ZHU Sai-hua. Measures of Energy Saving and Environmental Protection of Water Treatment in Bar Steel Plont[J]. Nonferrous Metals Science and Engineering, 2006, 20(4): 49-50. |