Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
YU Rong-min. Technology of extracting scandium in the comprehensive recovery of red mud-titanium white waste acid[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 31-35. DOI: 10.13264/j.cnki.ysjskx.2017.04.006
Citation: YU Rong-min. Technology of extracting scandium in the comprehensive recovery of red mud-titanium white waste acid[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 31-35. DOI: 10.13264/j.cnki.ysjskx.2017.04.006

Technology of extracting scandium in the comprehensive recovery of red mud-titanium white waste acid

More Information
  • Received Date: February 20, 2017
  • Published Date: August 30, 2017
  • In this paper, the extraction technology of scandiumis studied by the process of extraction after removal of impurities according to the property of the leaching solution of red mud-titanium white waste acid.Firstly, a certain amount of activated carbon was added into the leaching solution to remove silicon dioxide (SiO2). The removal rate of SiO2 was 96.70 % and the removal rate of scandium was 1.25 %. It shows that, most of the SiO2 is removed while the Sc3+ content is almost constant after the addition of activated carbon. The removal of SiO2 caneffectively control the gelatinization of leaching solution and facilitate the subsequent extraction process.The effect of acidity of leach solution, extractant volume fraction, phase ratio and extraction time on scandium extraction rate were examined. The results show that the optimal acidity of leaching solution after purification at 1.81 mol/L which can avoid the emulsification of organic phase and ensure high extraction rate of scandium; the extraction rate of scandium reaches equilibrium when the phase ratio is between 1/10~1/30, and the phase ratio of 1/25 is the optimal because the leaching solution is emulsificated when the phase ratio was at 1/30; the extraction rate of scandium reaches equilibrium when the extraction time is 15 min, and reaches the maximum when the extractant volume fraction is 15 % P204 + 6 % TBP. It's found that the extraction rate of scandium is 98.80 % under the optimum extraction conditions.
  • [1]
    李亮星, 宋祥莉, 黄茜琳.含钪废料的回收处理方法[J].江西有色金属, 2008, 22(2): 23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZS200901019.htm
    [2]
    WANG W W, PRANOLO Y, CHENG C Y. Metallurgical processes for scandium recovery from various resources: A review[J]. Hydrometallurgy, 2011, 108(1-2): 100-108. doi: 10.1016/j.hydromet.2011.03.001
    [3]
    ZHANG N, LI H X, LIU X M. Recovery of scandium from bauxite residue-red mud: a review[J]. Rare Metals, 2016, 35(12): 887-900. doi: 10.1007/s12598-016-0805-5
    [4]
    杨海琼, 董海刚, 赵家春, 等.钪的回收技术研究进展[J].有色金属(冶炼部分), 2014(3): 29-33. http://www.cnki.com.cn/Article/CJFDTOTAL-METE201403010.htm
    [5]
    JAYASHREE B, SUNIL G, HARISH J P, et al. Synthesis, characterization, neutron activation, and application of scandium oxide microsphere in radioactive particle tracking experiments[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 3-12. doi: 10.1021/acs.iecr.5b02261?src=recsys
    [6]
    LIAC H, CAOA F, GUOA S, et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition[J]. Journal of Alloys and Compounds, 2017, 691: 482-488. doi: 10.1016/j.jallcom.2016.08.255
    [7]
    BIEKE O, KOEN B. Recovery of scandium(Ⅲ) from aqueous solutions by solvent extraction with the functionalized ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Industrial & Engineering Chemistry Research, 2015, 54(6): 1887-1898. doi: 10.1021/ie504765v?src=recsys
    [8]
    司秀芬, 邓佐国, 徐廷华.赤泥提抗综述[J].江西有色金属, 2003, 17(2): 28-31.
    [9]
    WANG W, PRANOLO Y, CHENG C Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation and Purification Technology, 2013, 108: 96-102. doi: 10.1016/j.seppur.2013.02.001
    [10]
    钟学明.伯胺萃取法提取氧化钪的工艺研究[J].稀有金属, 2002, 26(6): 527-529. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS200206039.htm
    [11]
    徐廷华, 邓佐国, 李伟, 等.从钨渣浸出液中提取钪的研究[J].江西有色金属, 1997, 11(4): 32-36. http://www.cnki.com.cn/Article/CJFDTOTAL-JXYS199704009.htm
    [12]
    ZHAO Z G, KUBOTA F, KAMIYA N, et al. Selective extraction of scandium from transition metals by synergistic extraction with 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide[J]. Solvent Extraction Research and Development, 2016, 23(2): 137-143. doi: 10.15261/serdj.23.137
    [13]
    DENISOVA S A, GOLOVKINA A V, LESNOV A E. Extraction of scandium by diantipyrylalkanes from naphthalene-2-sulfonate solutions in the extraction systems of different types[J]. Journal of Analytical Chemistry, 2015, 70(2): 107-112. doi: 10.1134/S1061934815020033
    [14]
    XU S Q, LI S Q. Review of the extractive metallurgy of scandium in China (1978~1991) [J]. Hydrometallurgy, 1996, 42(3): 337-343. doi: 10.1016/0304-386X(95)00086-V
    [15]
    BIEKE O, CHENNA R B, TOM V G, et al. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Separation and Purification Technology, 2017, 176: 208-219. doi: 10.1016/j.seppur.2016.12.009
    [16]
    TURANOV A N, KARANDASHEV V K, BAULIN V E, et al. Extraction of rare earths and scandium by 2-phosphorylphenoxyacetic acid amides in the presence of ionic liquids[J]. Russian Journal of Inorganic Chemistry, 2016, 61(3): 377-383. doi: 10.1134/S0036023616030232
    [17]
    DEPUYDT D, DEHAEN W, BINNEMANS K. Solvent Extraction of Scandium(Ⅲ) by an Aqueous Biphasic System with a Nonfluorinated Functionalized Ionic Liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 8988-8996. doi: 10.1021/acs.iecr.5b01910?journalCode=iecred
    [18]
    HSU C G, XU Q, PAN J M. Determination of trace scandium by ion-exchanger phase spectrophotometry with p-nitrochlorophosphonazo[J]. Microchimica Acta, 1997, 126(1-2): 83-86. doi: 10.1007/BF01242666
    [19]
    MALGORZATA B, KRZYSZTOF M, JERZY K. Determination of aluminum, barium, molybdenum, scandium, berylium, titanium, vanadium, fluoride and boron in highly salinated waters[J]. Water Science & Technology, 2015, 33(6): 349-356. http://www.ingentaconnect.com/content/els/02731223/1996/00000033/00000006/art00286?format=ris
    [20]
    MAHINDRAKAR A N, CHANDRA S, SHINDE L P. Chemical characterization of Al-Li alloys for scandium by hyphenated technique using ion exchange chromatography[J]. Asian Journal of Chemistry, 2009, 21(3): 1775-1780. http://www.asianjournalofchemistry.co.in/User/SearchArticle.aspx?Volume=21&Issue=3&Article=&Criteria=
    [21]
    SHANG Q K, LI D Q, QI J X. Separation of scandium, yttrium and lanthanum in high-performance centrifugal partition chromatography with S-octyl phenyloxy acetic acid[J]. Journal of Solid State Chemistry, 2003, 171(1): 358-361. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100EUBC.TXT
    [22]
    WANG C Z, ZHOU G Z, ZHENG Z L. Extraction of scandium from red mud using ELM with P204 as carrier[J]. Advanced Materials Research, 2012(602-604): 1116-1119. https://www.scientific.net/AMR.602-604.1116
    [23]
    YANG X J, GU Z M, WANG D X. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane[J]. Journal of Membrane Science, 1995, 106(1): 131-145. http://www.ingentaconnect.com/content/els/03767388/1995/00000106/00000001/art00083
  • Related Articles

    [1]LIU Zuowei, XU Zhipeng, GUO Xueyi, TIAN Qinghua. Extraction and purification process of gallium[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 747-755. DOI: 10.13264/j.cnki.ysjskx.2023.06.001
    [2]DAN Weijie, XIAO Liansheng, ZHANG Guiqing, CAO Zuoying, LI Qinggang. Selective separation of chromium(Ⅲ) and iron(Ⅱ) by extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.03.006
    [3]YANG Shao-hua, LAI Xiao-hui, WANG Jun, WANG Hao-ran, XIE Bao-ru. The extraction and separation of rubidium from high potassium and sodium contained brine using t-BAMBP[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 17-21. DOI: 10.13264/j.cnki.ysjskx.2015.05.004
    [4]CHEN Jinqing, XIONG Jiaren, LIN Kai. Vanadium extraction from alkalinity system[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 20-24. DOI: 10.13264/j.cnki.ysjskx.2014.01.004
    [5]LI Bo. Research advances of molybdenum solvent extraction in acidic system[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 33-36. DOI: 10.13264/j.cnki.ysjskx.2013.06.021
    [6]DENG Zuo-guo, XU Ting-hua, HU Jian-kang, YANG Feng-li. Interpretations of fuzzy linkage extraction technology[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 10-12. DOI: 10.13264/j.cnki.ysjskx.2012.01.016
    [7]FAN Jin-jun, DENG Sheng-hua, XIE Fang-hao, YANG You-ming. Experiment on Back-extraction of Cr(Ⅲ) in Acidic Extractant by Alkali[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 97-100.
    [8]ZHANG Zi-yan. The Research and Development of Solvent Extraction in Tungsten Smelting[J]. Nonferrous Metals Science and Engineering, 2005, 19(3): 22-27, 46.
    [9]LU Rong-shuang, YANG Wen-long, LI Zhong-xia. Flow Fuzzy Control System in Industrial Extraction[J]. Nonferrous Metals Science and Engineering, 2004, 18(3): 43-46.
    [10]SI Xiu-fen, DENG Zuo-guo, XU Ting-hua. Summarization of Extracting Scandium from Red Mud[J]. Nonferrous Metals Science and Engineering, 2003, 17(2): 28-31.
  • Cited by

    Periodical cited type(9)

    1. 邱在容,彭长宏,周康根,陈伟. 硫酸法钛白铁资源综合利用现状及展望. 有色金属科学与工程. 2024(05): 758-764 . 本站查看
    2. 李世春,池君洲,王丽萍,李超. 从废弃物中回收稀土金属钪的研究进展. 稀有金属与硬质合金. 2023(01): 10-16 .
    3. 路梦雨,王智勇,戴惠新,龚志辉,王普蓉. 从赤泥中回收钪研究进展. 矿产综合利用. 2021(05): 9-16 .
    4. 马荣锴,罗星,冯吉福,李勇. 赤泥提铁尾矿酸浸液中钪的萃取. 轻金属. 2020(05): 11-15 .
    5. 顾振华,卿山,张玉辉,赵毅然,杜万基. 赤泥特性及资源化应用现状. 应用化工. 2020(08): 2087-2090 .
    6. 赵艺森,王海芳,魏阳. 赤泥的综合利用研究进展. 现代化工. 2019(03): 55-58 .
    7. 罗宇智,徐璐,曾小波,史光大. 钪富集物除钛试验研究. 有色金属(冶炼部分). 2019(08): 61-64 .
    8. 屈振民,张帅,张延玲. 高铁赤泥制备CaO-SiO_2-Fe_2O_3-Al_2O_3系微晶玻璃. 有色金属科学与工程. 2019(04): 34-38+71 . 本站查看
    9. 徐璐,罗宇智,史光大. 从赤泥硫酸熟化浸出液中预富集钪. 有色金属(冶炼部分). 2018(11): 39-41 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (80) PDF downloads (8) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return