Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
QIU Zairong, PENG Changhong, ZHOU Kanggen, CHEN Wei. Current situation and prospect of comprehensive utilization of titanium white iron resources by sulfuric acid process[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 758-764. DOI: 10.13264/j.cnki.ysjskx.2024.05.016
Citation: QIU Zairong, PENG Changhong, ZHOU Kanggen, CHEN Wei. Current situation and prospect of comprehensive utilization of titanium white iron resources by sulfuric acid process[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 758-764. DOI: 10.13264/j.cnki.ysjskx.2024.05.016

Current situation and prospect of comprehensive utilization of titanium white iron resources by sulfuric acid process

More Information
  • Received Date: October 17, 2023
  • Revised Date: November 22, 2023
  • During the production of titanium dioxide by sulfuric acid method, by-products containing a large amount of iron resources, such as ferrous sulfate heptahydrate slag and waste acid, are generated, For every 1.0 ton of titanium dioxide produced, approximately 5.0 m3 of free sulfuric acid and 4.0 ton of by-product ferrous sulfate are produced. The iron resources in these two types of waste have high utilization value. Currently, a mere fraction of the ferrous sulfate heptahydrate slag has undergone comprehensive repurposing, while the majority languishes in storage. Meanwhile, the waste acid is primarily used for lime neutralization, a procedure that not only results in the squandering of significant iron resources but also poses a substantial environmental risk. Based on the total amount of titanium dioxide resources and their distribution characteristics in the sulfuric acid process, this work clarifies that the utilization of iron-based resources is the bottleneck to restricting its clean production, and proposes a method for using iron resources in ilmenite to prepare battery-grade iron phosphate and iron-based pigments. With the new idea, the high-value utilization of titanium dioxide waste acid and by-product ferrous sulfate slag can be achieved, and its feasibility has been systematically analyzed.

  • [1]
    仇圣桃, 张明博, 李建新, 等. 含钛高炉渣资源化综合利用研究现状与展望[J]. 钢铁, 2016, 51(7) :1-8.
    [2]
    王海波, 孙科, 程晓哲, 等. 生物质烘干钛精矿对其酸解性能的影响[J]. 钢铁钒钛, 2022, 43(3) :33-39.
    [3]
    刘娟. 攀枝花钛资源制备沸腾氯化用富钛原料研究进展[J]. 中国有色冶金, 2018, 47(6) :49-53.
    [4]
    周磊, 任广义, 夏渊, 等. 2021年钛白粉行业状况与市场运行分析[J]. 涂层与防护, 2022, 43(12) :51-58.
    [5]
    吴彭森. 硫酸法钛白的清洁生产与环保治理研究[J]. 皮革制作与环保科技, 2021, 2(16)9-10, 12.
    [6]
    ZHANG Y, LI Z B, ASSELIN E. Determination and chemical modeling of the solubility of FeSO4·7H2O in the Ti(SO4)2-H2SO4-H2O system[J]. The Journal of Chemical Thermodynamics, 2016, 102:219-227.
    [7]
    JIANG Z H, QUAN X J, ZHAO S, et al. Dealkalization and leaching behavior of Fe, Al, Ca, and Si of red mud by waste acid from titanium white production[J]. ACS Omega, 2021, 6(48) :32798-32808.
    [8]
    ZHOU J, MA S Y, CHEN Y D, et al. Recovery of scandium from red mud by leaching with titanium white waste acid and solvent extraction with P204[J]. Hydrometallurgy, 2021, 204:105724.
    [9]
    余荣旻. 赤泥-钛白废酸综合回收中钪的萃取工艺[J]. 有色金属科学与工程, 2017, 8(4)31-35.
    [10]
    ZHANG G Q, ZHANG T A, LÜ G Z, et al. Extraction of vanadium from LD converter slag by pressure leaching process with titanium white waste acid[J]. Rare Metal Materials and Engineering, 2015, 44(8) :1894-1898.
    [11]
    李婷婷, 张廷安, 吕国志, 等. 钛白废酸直接浸出含钒钢渣基础实验研究与机理分析[J]. 矿冶工程, 2021, 41(4)104-108.
    [12]
    龚家竹, 吴宁兰, 陆祥芳, 等. 钛白粉废硫酸回收利用技术研究进展[J]. 硫酸工业, 2019(12) :6-9.
    [13]
    朱玉杰, 朱效甲. 硫氧镁水泥制品试验研究与生产新进展[J]. 上海建材, 2014(3) :28-29.
    [14]
    FENG X, WU P, JIANG L Y. Titanium white waste acid concentration by DCMD:Wetting, crystallization, and fouling[J]. Desalination, 2018, 440:161-174.
    [15]
    HU B, OUYANG J T, JIANG L Y. Influence of flocculant polyacrylamide on concentration of titanium white waste acid by direct contact membrane distillation[J]. Chinese Journal of Chemical Engineering, 2020, 28(9) :2483-2496.
    [16]
    杨海舟, 秦玲玲, 陈钢. 钛白废酸回收及综合利用研究进展[J]. 广东化工, 2018, 45(16):118-119.
    [17]
    WEI Q F, REN X L, GUO J J, et al. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping[J]. Journal of Hazardous Materials, 2016, 304:1-9.
    [18]
    ZHANG W G, ZHANG T A, CAI L L, et al. Preparation of doped iron phosphate by selective precipitation of iron from titanium dioxide waste acid[J]. Metals, 2020, 10(6) :789.
    [19]
    张宇婕. 钛白废酸和磷矿浮选尾矿制备硫酸亚铁镁工艺研究[D]. 上海:华东理工大学, 2017.
    [20]
    马艳萍. 硫酸法钛白粉企业循环经济模式研究[J]. 化工管理, 2021(21) :58-59.
    [21]
    马雪阳, 梁斌, 吕莉, 等. 从钛白废酸中萃取回收钛[J]. 钢铁钒钛, 2016, 37(4) :62-68.
    [22]
    袁江涛. 云南某公司钛白废酸提钪工艺研究[J]. 矿产与地质, 2017, 31(3): 636-640.
    [23]
    李玉华, 李青刚. 从钛白水解废酸中回收钪及钪钛的分离研究[C]//2016全国稀土冶炼与环境保护技术交流会会刊, 2016:5.
    [24]
    杨涛, 王志坚, 肖劲, 等. 赤泥和钛白废液中提钪的浸出工艺研究[J]. 矿冶, 2015, 24(5)37-40.
    [25]
    范兵, 李志广, 李昭, 等. 硫酸法钛白废酸的处理[J]. 河南化工, 2013, 30(6)12-15.
    [26]
    朱晓波, 牛泽鹏, 李望, 等. 溶剂萃取法回收钛白废液中钒的实验研究[J]. 稀有金属与硬质合金, 2020, 48(1) :9-12.
    [27]
    袁文龙, 王碧侠, 赵瑛, 等. 用钛白副产硫酸亚铁合成磷酸铁前驱体[J]. 有色金属工程, 2023, 13(7) :61-68.
    [28]
    周康根, 胡振光, 彭长宏, 等. 一种钛白副产硫酸亚铁制备水合磷酸铁的方法:CN111847416B[P]. 2022-04-15.
    [29]
    钱有军, 裴晓东, 骆艳华, 等. 钛白副产物硫酸亚铁净化液制备高品质氧化铁红试验[J]. 金属矿山, 2021(7) :211-215.
    [30]
    房希婷. 工业酸洗液的自然挥发过程及其团簇结构的研究[D]. 天津: 天津科技大学, 2014.
    [31]
    徐高栋. 中国钛白产业环保现状与节能减排策略[J]. 新材料产业, 2010(1) :37-40.
    [32]
    徐高栋. 新经济形势下的中国钛白行业[J]. 现代矿业, 2010, 26(4) :132-135.
    [33]
    沈晓彦, 黄钟琪, 周建新, 等. 锂电池在风光发电储能系统中的应用分析[J]. 电源技术, 2011, 35(5): 602-604.
    [34]
    周康根, 彭长宏, 何德文, 等. 一种磷酸铁生产过程中母液的循环利用方法:CN107445139B[P]. 2019-10-29.
    [35]
    孟素芬. 利用钛白副产硫酸亚铁制备电池级磷酸铁的工艺研究[J]. 广东化工, 2019, 46(19) :1-2.
    [36]
    卢雄雄. 钕铁硼二次废料制备纳米氧化铁黄工艺研究[D]. 赣州:江西理工大学, 2023.
  • Related Articles

    [1]GONG Ziqi, ZHENG Liyin. Study on the composition optimization and microstructure properties of super high-strength aluminum alloy with scandium[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 75-84. DOI: 10.13264/j.cnki.ysjskx.2025.01.009
    [2]ZHANG Bo, LIU Yi, XIA Shubiao. Effects of heat treatment on the microstructure and mechanical performance of Co-Cr alloy by selective laser melting[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 265-273. DOI: 10.13264/j.cnki.ysjskx.2024.02.013
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [5]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [6]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [7]WU Wenbo, CUI Shuhui, ZHENG Xueqing, XING Meishan. Determination the production process of Cu-Ni-Si alloy for the motor[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2020.02.011
    [8]QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007
    [9]HUANG Lihua, ZHANG Tao, ZHANG Xiaobo. Effects of heat treatment and extrusion on the microstructures and mechanical properties of WE53 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 67-70. DOI: 10.13264/j.cnki.ysjskx.2014.06.011
    [10]LI Sanhua, LEI Qian, LI Zhou, ZHANG Liang, WANG Mengying, LIU Huiqun. Micro-structures and properties of ultra-high strength Cu-Ni-Si-Mg-Cr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 35-38,78. DOI: 10.13264/j.cnki.ysjskx.2014.05.006
  • Cited by

    Periodical cited type(5)

    1. 杨泾萍,周文凤,闻福林,刘建辉. 双级时效对ZL205A合金力学性能的影响. 金属热处理. 2024(02): 149-153 .
    2. 武磊,何兵,覃文东,覃铭. 异速轧制和常规轧制对7075铝板力学性能的影响. 有色金属科学与工程. 2024(03): 400-406 . 本站查看
    3. 江海霞,陈俐蔓,韩东,周波,刘刚,胡小刚,邱龙时. 电解液pH对7075铝合金表面微弧氧化膜层腐蚀性能影响研究. 稀有金属. 2024(12): 1692-1701 .
    4. 朱炳耀,贾小波. 超声振动原位Al_2O_(3(p))/7075汽车零件合金组织与耐腐蚀性能研究. 有色金属科学与工程. 2023(04): 511-517 . 本站查看
    5. 王维,董晓传. 7系铝合金时效强化研究现状. 金属加工(热加工). 2023(12): 82-86 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (44) PDF downloads (8) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return