Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DU Kaiping, YU Yueguang, ZHANG Shuting, SHI Ji. Detection method of nano-carbide precipitates in microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.01.006
Citation: DU Kaiping, YU Yueguang, ZHANG Shuting, SHI Ji. Detection method of nano-carbide precipitates in microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.01.006

Detection method of nano-carbide precipitates in microalloyed steel

More Information
  • Received Date: May 08, 2016
  • Published Date: February 27, 2017
  • The nano-carbide precipitates in Ti microalloyed steel are obtained through direct thinning. Extraction replica and nondestructive electrolysis extraction, and different detection methods of nano-carbide precipitates are also compared. In the case of direct thinning, the orientation relationship between the nano-carbide precipitates and the matrix can be identified and used to analyze the formation process of nano-carbide precipitates. Since the M3C/MCmass fraction is more than 45, the MC-type carbide is more difficult to be observed for the direct thinning as compared in the case of extraction replica and nondestructive electrolysis extraction. In addition, direct thinning and extraction replica are only used to observe nano-carbide precipitates in a plane, while nondestructive electrolysis extraction can be used to observe the nano-carbide precipitates in a cube with a certain size, thus delivering representative and repeatable test results. Furthermore, after obtaining the nano-carbide precipitates by nondestructive electrolysis extraction, the phase composition and the particle size distribution of nano-carbide precipitates can be investigated through chemical phase analysis and X-ray small angle scattering. Therefore, the analysis results of nano-carbide precipitates obtained by nondestructive electrolysis extraction are more comprehensive.
  • [1]
    翁宇庆.超细晶钢:钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.
    [2]
    FU J, LI G, MAO X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metallurgical and Materials Transactions A, 2011, 42(12): 3797-3812. doi: 10.1007/s11661-011-0767-z
    [3]
    SHIGA C, HIRAOKA K. Development of high-strength steel in STX-21 project and associated tasks[J]. Welding Technique, 1998, 7: 81-87.
    [4]
    PARK J W, KIM J W, CHUNG Y H. Grain refinement of steel plate by continuous equal-channel angular process[J]. Scripta Materialia, 2004, 51(2): 181-184. doi: 10.1016/j.scriptamat.2004.02.022
    [5]
    傅杰, 李光强, 于月光, 等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学, 2011, 13(1): 31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201101006.htm
    [6]
    WANG Z, GUO Y, SUN D, et al. Texture comparison of an ordinary IF steel and a high-strength IF steel under ferritic rolling and high-temperature coiling[J]. Materials Characterization, 2006, 57(4): 402-407. https://www.researchgate.net/publication/248495603_Texture_comparison_of_an_ordinary_IF_steel_and_a_high-strength_IF_steel_under_ferritic_rolling_and_high-temperature_coiling
    [7]
    雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
    [8]
    PICKING F B, 刘嘉禾.钢的组织与性能[M].北京:科学出版社, 1999.
    [9]
    GLADMAN T. Second phase particle distribution and secondary recrystallisation[J]. Scripta Metallurgica et Materialia, 1992, 27(11): 1569-1573. doi: 10.1016/0956-716X(92)90146-6
    [10]
    SETO K, FUNAKAWA Y, KANEKO S. Hot rolled high strength steels for suspension and chassis parts "NANOHITEN" and "BHT steel"[J]. JFE Technical Report, 2007, 10: 19-25. https://www.researchgate.net/publication/279670132_Hot_rolled_high_strength_steels_for_suspension_and_chassis_parts_NANOHITEN_and_BHTR_steel
    [11]
    FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. doi: 10.2355/isijinternational.44.1945
    [12]
    CHEN C Y, YEN H W, KAO F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering:(A), 2009, 499(1): 162-166. https://www.researchgate.net/profile/Hung_Wei_Yen/publication/223478907_Precipitation_hardening_of_high-strength_low-alloy_steels_by_nanometer-sized_carbides/links/5470af0b0cf216f8cfaa80a1.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [13]
    LEE W B, HONG S G, PARK C G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb[J]. Scripta Materialia, 2000, 43(4): 319-324. doi: 10.1016/S1359-6462(00)00411-5
    [14]
    杜开平, 于月光, 张淑婷, 等.超快速冷却条件下Ti微合金钢中纳米碳化物及其强化作用[J].有色金属科学与工程, 2016, 7(4): 27-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160405
    [15]
    CAO J, YONG Q, LIU Q, et al. Precipitation of MC phase and precipitation strengthening in hot rolled Nb-Mo and Nb-Ti steels[J]. Journal of Materials Science, 2007, 42(24): 10080-10084. doi: 10.1007/s10853-007-2000-4
    [16]
    唐延川, 康永林, 岳丽娟, 等.热轧终轧温度对形变时效状态QBe2合金薄板性能的影响[J].有色金属科学与工程, 2014, 5(5): 39-44. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2014050007
    [17]
    CHARLEUX M, POOLE W J, MILITZER M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1635-1647. doi: 10.1007/s11661-001-0142-6
    [18]
    POORHAYDARI K, IVEY D G. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM[J]. Materials Characterization, 2007, 58(6): 544-554. doi: 10.1016/j.matchar.2006.10.017
    [19]
    钢铁研究总院.钢和铁镍基合金的物理化学相分析[M].上海:上海科技出版社, 1981.
    [20]
    李冬玲, 方建锋, 刘庆斌, 等. X-射线小角散射法测定钢铁及合金中析出相的粒度[J].冶金分析, 2008, 28(3): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803000.htm
  • Related Articles

    [1]CHEN Shuting, XIA Yiqiang, CHEN Lanlan, XIAO Haiping. Slope DEM extraction and accuracy analysis based on multi-source reference data[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 432-439. DOI: 10.13264/j.cnki.ysjskx.2024.03.013
    [2]CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008
    [3]ZHANG Hepeng, SUN Sicong, MEI Longbao, LIANG Liang. Preparation of super-high purity niobium oxide by adjusting valence state extraction and ceramic membrane filtration combined with antimony removal[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 71-75. DOI: 10.13264/j.cnki.ysjskx.2020.02.010
    [4]HE Yunlong, XU Ruidong, HE Shiwei, ZHU Yun, SHEN Qingfeng, CHEN Hansen, LI Kuo. Research on bismuth extraction from alkaline oxidative leaching residues of bismuth-rich lead anode slime by casting and electrolysis[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 41-48. DOI: 10.13264/j.cnki.ysjskx.2019.01.007
    [5]XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011
    [6]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [7]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [8]HUANG Xilin, LI Liangxing, HUANG Jindi, LIAO Chunfa, TONG Changren. Extraction performance of bismuth with N235 under Cl-assisted extraction[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 19-23. DOI: 10.13264/j.cnki.ysjskx.2017.02.004
    [9]WANG Jinliang, YANG Yiqing. Analysis of the electric field in rare earth molten salt electrolytic cell based on Comsol[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 30-34. DOI: 10.13264/j.cnki.ysjskx.2016.06.006
    [10]DONG Wei, SHEN Qing, CHEUNG Honyeung, YU Shuijing, DENG Yangwu, PAN Tao. Extraction and profile analysis of lipids from Bacillaceae spores[J]. Nonferrous Metals Science and Engineering, 2015, (2): 124-129. DOI: 10.13264/j.cnki.ysjskx.2015.02.023
  • Cited by

    Periodical cited type(4)

    1. 邱小云,王冀恒. 挤压铸造铝铜合金的组织与力学性能研究. 铸造. 2024(03): 364-370 .
    2. 潘丽飞,罗伟强,罗云丽,罗世阳. 改善金属材料摩擦磨损性能的有效途径. 装备制造技术. 2024(07): 147-151 .
    3. 陈子健,林业佳,李传强,邓仁昡,董勇,章争荣. 微合金化调控7075铝合金的微观组织与力学性能. 金属热处理. 2024(09): 58-63 .
    4. 毛鹏燕,赵晖,李宏达. Al含量对AlxCoCrFeNi高熵合金组织和力学性能的影响. 有色金属科学与工程. 2024(06): 867-876 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (73) PDF downloads (3) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return