Citation: | DU Kaiping, YU Yueguang, ZHANG Shuting, SHI Ji. Detection method of nano-carbide precipitates in microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.01.006 |
[1] |
翁宇庆.超细晶钢:钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.
|
[2] |
FU J, LI G, MAO X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metallurgical and Materials Transactions A, 2011, 42(12): 3797-3812. doi: 10.1007/s11661-011-0767-z
|
[3] |
SHIGA C, HIRAOKA K. Development of high-strength steel in STX-21 project and associated tasks[J]. Welding Technique, 1998, 7: 81-87.
|
[4] |
PARK J W, KIM J W, CHUNG Y H. Grain refinement of steel plate by continuous equal-channel angular process[J]. Scripta Materialia, 2004, 51(2): 181-184. doi: 10.1016/j.scriptamat.2004.02.022
|
[5] |
傅杰, 李光强, 于月光, 等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学, 2011, 13(1): 31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201101006.htm
|
[6] |
WANG Z, GUO Y, SUN D, et al. Texture comparison of an ordinary IF steel and a high-strength IF steel under ferritic rolling and high-temperature coiling[J]. Materials Characterization, 2006, 57(4): 402-407. https://www.researchgate.net/publication/248495603_Texture_comparison_of_an_ordinary_IF_steel_and_a_high-strength_IF_steel_under_ferritic_rolling_and_high-temperature_coiling
|
[7] |
雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
|
[8] |
PICKING F B, 刘嘉禾.钢的组织与性能[M].北京:科学出版社, 1999.
|
[9] |
GLADMAN T. Second phase particle distribution and secondary recrystallisation[J]. Scripta Metallurgica et Materialia, 1992, 27(11): 1569-1573. doi: 10.1016/0956-716X(92)90146-6
|
[10] |
SETO K, FUNAKAWA Y, KANEKO S. Hot rolled high strength steels for suspension and chassis parts "NANOHITEN" and "BHT steel"[J]. JFE Technical Report, 2007, 10: 19-25. https://www.researchgate.net/publication/279670132_Hot_rolled_high_strength_steels_for_suspension_and_chassis_parts_NANOHITEN_and_BHTR_steel
|
[11] |
FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. doi: 10.2355/isijinternational.44.1945
|
[12] |
CHEN C Y, YEN H W, KAO F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering:(A), 2009, 499(1): 162-166. https://www.researchgate.net/profile/Hung_Wei_Yen/publication/223478907_Precipitation_hardening_of_high-strength_low-alloy_steels_by_nanometer-sized_carbides/links/5470af0b0cf216f8cfaa80a1.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
|
[13] |
LEE W B, HONG S G, PARK C G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb[J]. Scripta Materialia, 2000, 43(4): 319-324. doi: 10.1016/S1359-6462(00)00411-5
|
[14] |
杜开平, 于月光, 张淑婷, 等.超快速冷却条件下Ti微合金钢中纳米碳化物及其强化作用[J].有色金属科学与工程, 2016, 7(4): 27-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160405
|
[15] |
CAO J, YONG Q, LIU Q, et al. Precipitation of MC phase and precipitation strengthening in hot rolled Nb-Mo and Nb-Ti steels[J]. Journal of Materials Science, 2007, 42(24): 10080-10084. doi: 10.1007/s10853-007-2000-4
|
[16] |
唐延川, 康永林, 岳丽娟, 等.热轧终轧温度对形变时效状态QBe2合金薄板性能的影响[J].有色金属科学与工程, 2014, 5(5): 39-44. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2014050007
|
[17] |
CHARLEUX M, POOLE W J, MILITZER M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1635-1647. doi: 10.1007/s11661-001-0142-6
|
[18] |
POORHAYDARI K, IVEY D G. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM[J]. Materials Characterization, 2007, 58(6): 544-554. doi: 10.1016/j.matchar.2006.10.017
|
[19] |
钢铁研究总院.钢和铁镍基合金的物理化学相分析[M].上海:上海科技出版社, 1981.
|
[20] |
李冬玲, 方建锋, 刘庆斌, 等. X-射线小角散射法测定钢铁及合金中析出相的粒度[J].冶金分析, 2008, 28(3): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803000.htm
|
[1] | ZHANG Tingrui, WANG Mengjun, ZHEN Jinhui, FENG Zexi. High-temperature friction of Al-Zn-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2022.02.010 |
[2] | SUN Ke, LIU Jinping, WANG Jing. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 65-72. DOI: 10.13264/j.cnki.ysjskx.2020.03.009 |
[3] | ZHANG Qinying, CHEN Hao, REN Xingrun, WEN Yan. Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 109-114. DOI: 10.13264/j.cnki.ysjskx.2017.05.016 |
[4] | LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013 |
[5] | ZHANG Xuehui, ZHANG Biao, ZHU Taiheng, WANG Cheng, YU Yinhong, CHEN Hao. Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 33-39. DOI: 10.13264/j.cnki.ysjskx.2016.04.006 |
[6] | HUANG Zhu, LIU Meixia, LI Tianbai, ZHANG Xuehui, CHEN Hao. Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 66-70. DOI: 10.13264/j.cnki.ysjskx.2016.03.012 |
[7] | ZHONG Yichang, REN Xingrun, HUANG Zhu, CHEN Hao. Effect of nitrogen flow on microstructure and mechanical properties of TiN films[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 47-53. DOI: 10.13264/j.cnki.ysjskx.2016.03.009 |
[8] | WANG Chunting, YE Yuwei, HU Jianmin, CHEN Hao, WANG Yongxin, LI Jinlong. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. DOI: 10.13264/j.cnki.ysjskx.2015.02.008 |
[9] | LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22. |