Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DU Kaiping, YU Yueguang, ZHANG Shuting, SHI Ji. Detection method of nano-carbide precipitates in microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.01.006
Citation: DU Kaiping, YU Yueguang, ZHANG Shuting, SHI Ji. Detection method of nano-carbide precipitates in microalloyed steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 35-41. DOI: 10.13264/j.cnki.ysjskx.2017.01.006

Detection method of nano-carbide precipitates in microalloyed steel

More Information
  • Received Date: May 08, 2016
  • Published Date: February 27, 2017
  • The nano-carbide precipitates in Ti microalloyed steel are obtained through direct thinning. Extraction replica and nondestructive electrolysis extraction, and different detection methods of nano-carbide precipitates are also compared. In the case of direct thinning, the orientation relationship between the nano-carbide precipitates and the matrix can be identified and used to analyze the formation process of nano-carbide precipitates. Since the M3C/MCmass fraction is more than 45, the MC-type carbide is more difficult to be observed for the direct thinning as compared in the case of extraction replica and nondestructive electrolysis extraction. In addition, direct thinning and extraction replica are only used to observe nano-carbide precipitates in a plane, while nondestructive electrolysis extraction can be used to observe the nano-carbide precipitates in a cube with a certain size, thus delivering representative and repeatable test results. Furthermore, after obtaining the nano-carbide precipitates by nondestructive electrolysis extraction, the phase composition and the particle size distribution of nano-carbide precipitates can be investigated through chemical phase analysis and X-ray small angle scattering. Therefore, the analysis results of nano-carbide precipitates obtained by nondestructive electrolysis extraction are more comprehensive.
  • [1]
    翁宇庆.超细晶钢:钢的组织细化理论与控制技术[M].北京:冶金工业出版社, 2003.
    [2]
    FU J, LI G, MAO X, et al. Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel[J]. Metallurgical and Materials Transactions A, 2011, 42(12): 3797-3812. doi: 10.1007/s11661-011-0767-z
    [3]
    SHIGA C, HIRAOKA K. Development of high-strength steel in STX-21 project and associated tasks[J]. Welding Technique, 1998, 7: 81-87.
    [4]
    PARK J W, KIM J W, CHUNG Y H. Grain refinement of steel plate by continuous equal-channel angular process[J]. Scripta Materialia, 2004, 51(2): 181-184. doi: 10.1016/j.scriptamat.2004.02.022
    [5]
    傅杰, 李光强, 于月光, 等.基于纳米铁碳析出物的钢综合强化机理[J].中国工程科学, 2011, 13(1): 31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201101006.htm
    [6]
    WANG Z, GUO Y, SUN D, et al. Texture comparison of an ordinary IF steel and a high-strength IF steel under ferritic rolling and high-temperature coiling[J]. Materials Characterization, 2006, 57(4): 402-407. https://www.researchgate.net/publication/248495603_Texture_comparison_of_an_ordinary_IF_steel_and_a_high-strength_IF_steel_under_ferritic_rolling_and_high-temperature_coiling
    [7]
    雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.
    [8]
    PICKING F B, 刘嘉禾.钢的组织与性能[M].北京:科学出版社, 1999.
    [9]
    GLADMAN T. Second phase particle distribution and secondary recrystallisation[J]. Scripta Metallurgica et Materialia, 1992, 27(11): 1569-1573. doi: 10.1016/0956-716X(92)90146-6
    [10]
    SETO K, FUNAKAWA Y, KANEKO S. Hot rolled high strength steels for suspension and chassis parts "NANOHITEN" and "BHT steel"[J]. JFE Technical Report, 2007, 10: 19-25. https://www.researchgate.net/publication/279670132_Hot_rolled_high_strength_steels_for_suspension_and_chassis_parts_NANOHITEN_and_BHTR_steel
    [11]
    FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951. doi: 10.2355/isijinternational.44.1945
    [12]
    CHEN C Y, YEN H W, KAO F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering:(A), 2009, 499(1): 162-166. https://www.researchgate.net/profile/Hung_Wei_Yen/publication/223478907_Precipitation_hardening_of_high-strength_low-alloy_steels_by_nanometer-sized_carbides/links/5470af0b0cf216f8cfaa80a1.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [13]
    LEE W B, HONG S G, PARK C G, et al. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb[J]. Scripta Materialia, 2000, 43(4): 319-324. doi: 10.1016/S1359-6462(00)00411-5
    [14]
    杜开平, 于月光, 张淑婷, 等.超快速冷却条件下Ti微合金钢中纳米碳化物及其强化作用[J].有色金属科学与工程, 2016, 7(4): 27-32. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160405
    [15]
    CAO J, YONG Q, LIU Q, et al. Precipitation of MC phase and precipitation strengthening in hot rolled Nb-Mo and Nb-Ti steels[J]. Journal of Materials Science, 2007, 42(24): 10080-10084. doi: 10.1007/s10853-007-2000-4
    [16]
    唐延川, 康永林, 岳丽娟, 等.热轧终轧温度对形变时效状态QBe2合金薄板性能的影响[J].有色金属科学与工程, 2014, 5(5): 39-44. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2014050007
    [17]
    CHARLEUX M, POOLE W J, MILITZER M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metallurgical and Materials Transactions A, 2001, 32(7): 1635-1647. doi: 10.1007/s11661-001-0142-6
    [18]
    POORHAYDARI K, IVEY D G. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM[J]. Materials Characterization, 2007, 58(6): 544-554. doi: 10.1016/j.matchar.2006.10.017
    [19]
    钢铁研究总院.钢和铁镍基合金的物理化学相分析[M].上海:上海科技出版社, 1981.
    [20]
    李冬玲, 方建锋, 刘庆斌, 等. X-射线小角散射法测定钢铁及合金中析出相的粒度[J].冶金分析, 2008, 28(3): 1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803000.htm
  • Related Articles

    [1]ZHANG Tingrui, WANG Mengjun, ZHEN Jinhui, FENG Zexi. High-temperature friction of Al-Zn-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 76-81. DOI: 10.13264/j.cnki.ysjskx.2022.02.010
    [2]SUN Ke, LIU Jinping, WANG Jing. Study on the microstructure and properties of nickel-doped graphite-copper composites prepared by spark plasma sintering[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 65-72. DOI: 10.13264/j.cnki.ysjskx.2020.03.009
    [3]ZHANG Qinying, CHEN Hao, REN Xingrun, WEN Yan. Effect of Al target sputtering power on themicrostructure and tribological properties of CrAlN coatings[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 109-114. DOI: 10.13264/j.cnki.ysjskx.2017.05.016
    [4]LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013
    [5]ZHANG Xuehui, ZHANG Biao, ZHU Taiheng, WANG Cheng, YU Yinhong, CHEN Hao. Frictional wear behavior of tungsten heavy alloys 93W-4.9Ni-2.1Fe[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 33-39. DOI: 10.13264/j.cnki.ysjskx.2016.04.006
    [6]HUANG Zhu, LIU Meixia, LI Tianbai, ZHANG Xuehui, CHEN Hao. Friction and wear properties of electro-deposited Ni-W-WC composite coatings[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 66-70. DOI: 10.13264/j.cnki.ysjskx.2016.03.012
    [7]ZHONG Yichang, REN Xingrun, HUANG Zhu, CHEN Hao. Effect of nitrogen flow on microstructure and mechanical properties of TiN films[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 47-53. DOI: 10.13264/j.cnki.ysjskx.2016.03.009
    [8]WANG Chunting, YE Yuwei, HU Jianmin, CHEN Hao, WANG Yongxin, LI Jinlong. Tribological performances of CrCN coatings under different deposition temperatures[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 42-47. DOI: 10.13264/j.cnki.ysjskx.2015.02.008
    [9]LI Yong, LIU Rui-qing, XU Fang. Tribological Behaviors of Cu-Ag-Fe Alloy Carrying Electric Current[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 18-22.

Catalog

    Article Metrics

    Article views (73) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return