Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
BAO Morigengaowa, WANG Zhaowen, GAO Bingliang, SHI Zhongning, HU Xianwei. Simple and highly effective new way of measuring electrical conductivity of molten salts[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 8-12. DOI: 10.13264/j.cnki.ysjskx.2016.06.002
Citation: BAO Morigengaowa, WANG Zhaowen, GAO Bingliang, SHI Zhongning, HU Xianwei. Simple and highly effective new way of measuring electrical conductivity of molten salts[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 8-12. DOI: 10.13264/j.cnki.ysjskx.2016.06.002

Simple and highly effective new way of measuring electrical conductivity of molten salts

More Information
  • Received Date: December 13, 2015
  • Published Date: December 30, 2016
  • The paper presented a simple and highly effective new way ofmeasuring the electrical conductivity of molten salts—the tube-type cell technique. The electrical conductivity of nNaF·AlF3-Al2O3-CaF2 melts was measured by impedance meter with pyrolytic boron nitride (BN) as conductivity cell, tungsten filament as the working electrode and graphite as the counter electrode, and was compared with the data of conductivity obtained by CHOUDHARY model and the WANG model. The result shows that the data obtained by tube-type cell are similar with to calculation data by the empirical formula with high-accuracy and high reproducibility, hence , the tube-type cell technique is an effective way of measuring with the excellent properties of high-accuracy, simple structure and inexpensiveness whose application of range can be widen to measure conductivity of molten salts.
  • [1]
    胡宪伟,王兆文,路贵民等.连续变化电导池常数法测定电导率的等效电路分析及应用[J]. 中国有色金属学报,2008,18(3): 551-556. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200803031.htm
    [2]
    阚洪敏.低温铝电解的研究[D].东北大学,2007:60. http://cn.bing.com/academic/profile?id=1532552151&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    廖春发,王坤,王旭等.NaCl-CaCl2-CaWO4熔盐体系电导率的研究[J].有色金属科学与工程,2013,4(5):19-22. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013050005
    [4]
    Schiefelbein S L, Sadoway D R. A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides[J]. Metallurgical and Materials Transactions B, 1997, 28B: 1141-1149. http://cn.bing.com/academic/profile?id=1983915564&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Wang X W, Ray D P, Alton T T. electrical conductivity of cryolitic melts[C]. Light Metals 1992, warrendale: Minerals, Metals&Materials Soc., 1992.5: 481-488.
    [6]
    Dong Q Y Shen L N, Wang M P, et al. Microstructure and properties of Cu-2.3Fe-0.03P alloy during thermomechanical treatments [J]. Transactions of Nonferrous Metals Society of China. 2015.25:1551-1558. doi: 10.1016/S1003-6326(15)63757-8
    [7]
    余翔,张冰,林桢等.基于Van Der Pauw原理的溶液电导率计[J].浙江大学学报(工学版),2015,49(2):371-375. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201502031.htm
    [8]
    辛秦,王新东.温度对氢气还原氧化铁影响及电化学性能研究[J].有色金属科学与工程,2015,6(1):41-47. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501008
    [9]
    章珏,郑鑫,梁金等.NdF3-LiF-Nd2O3体系熔盐电导率影响因素的研究[J].稀有金属与硬质合金,2014,42(4):17-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201404006.htm
    [10]
    Korenko M, Vasková Z, Šimko F, et al. Electrical conductivity and viscosity of cryolite electrolytes for solar grade silicon (Si-SoG) electrowinning [J]. Transactions of Nonferrous Metals Society of China. 2014.24(12):3944-3948. doi: 10.1016/S1003-6326(14)63554-8
    [11]
    Bao M, Wang Z W, Gao B L, et al. Electrical conductivity of NaF−AlF3−CaF2−Al2 O3−ZrO2 molten salts [J]. Transactions of Nonferrous Metals Society of China. 2013.23:3788-3792. doi: 10.1016/S1003-6326(13)62930-1
    [12]
    Thonstad J, Qiu Z X, Liu H SH, et al.Aluminium Electrolysis(3rd edition)[M], Metallurgical Industry Press,2010: 18
    [13]
    包莫日根高娃,王兆文,丁晨亮等.铝液还原熔盐中ZrO2制备纯铝锆母合金[J].有色金属科学与工程,2014,5(4):13-17,54. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201404003
    [14]
    Bao M, Wang Z W, Gao B L, et al. Effect of the addition of ZrO2 on the liquidus temperature of nNaF•AlF3-Al2O3 Molten Salt System [C]. World Non-Grid-Connected Wind Power and Energy Conference (WNWEC), Nanjing, China; World Wind Energy Institute, 2010:211-213.
    [15]
    Grjotheim K, Nikolic R, YE H A . Electrical conductivities of binary and ternary melts between MgCl2,CaCl2,NaCl,and KCl[J], Acta Chemica Scandinavica, 1970 (24): 489-509
    [16]
    Kan H M, Wang Z W, Ban Y Get al.Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF (NaCl) system electrolyte [J] .Transactions of Nonferrous Metals Society of China, 2007, 17(1):181 186. doi: 10.1016/S1003-6326(07)60069-7
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [7]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [8]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [9]LI Ming-zhou, HUANG Jin-di, TONG Chang-ren, ZHANG Wen-hai. A composition soft-sensing model of FeO-Fe2O3-SiO2 ternary slag system based on two-temperature two-density method[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 37-41. DOI: 10.13264/j.cnki.ysjskx.2016.05.007
    [10]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
  • Cited by

    Periodical cited type(2)

    1. 朱永泽,杨时聪,谢克强,魏奎先,马文会. 电镀金刚线硅片切割废料杂质溯源及源头控制. 稀有金属. 2024(01): 145-152 .
    2. 郭志强,燕可洲,张吉元,柳丹丹,高阳艳,郭彦霞. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制. 化工学报. 2022(05): 2194-2205 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (66) PDF downloads (11) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return