Citation: | XIN Qin, WANG Xindong. Effect of temperature on the reduction of iron oxide by hydrogen and electrochemical performance of reduction product[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2015.01.008 |
[1] |
赵庆杰, 魏国, 储满生, 等.直接还原铁在我国钢铁工业中的作用及前景展望[J].攀枝花科技信息, 2010, 35(4): 1. http://www.cnki.com.cn/Article/CJFDTOTAL-PZHK201004003.htm
|
[2] |
史占彪, 赵庆杰.非高炉炼铁学[M].沈阳:东北工学院出版社, 1990: 1-8.
|
[3] |
赵庆杰, 储满生, 王治卿, 等.非高炉炼铁技术及在我国发展的展望[C]//2008年全国炼铁生产技术会议暨炼铁年会文集, 2008: 51. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGJS200804001010.htm
|
[4] |
Fruehan R J, Li Y, Brabie L. Final stage of reduction of iron ores by hydrogen[J]. Scandinavian Journal of Metallurgy, 2005, 34(3): 205. doi: 10.1111/sjm.2005.34.issue-3
|
[5] |
EI-geassy A A, Nasr M I. Influence of original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts[J]. ISIJ International, 1990, 30(6): 417. doi: 10.2355/isijinternational.30.417
|
[6] |
Sujoy K D, Ahindra G. Kinetics of gaseous reduction of iron ore fines[J].ISIJ International, 1993, 33(11): 1168. doi: 10.2355/isijinternational.33.1168
|
[7] |
Pourghahramani P, Forssberg E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods[J]. Thermochimica Acta, 2007, 454(2): 69. doi: 10.1016/j.tca.2006.12.023
|
[8] |
Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2. Part I: Low temperature reduction of hematite[J]. Thermochimica Acta, 2006, 447(1): 89. doi: 10.1016/j.tca.2005.10.004
|
[9] |
Unal A, Bradshaw A V. Rate processes and structural changes in gaseous reduction of hematite particles to magnetit[J]. Metallurgical Transactions B, 1983, 14B (12): 743. https://www.researchgate.net/publication/250675839_Rate_processes_and_structural_changes_in_gaseous_reduction_of_hematite_particles_to_magnetite
|
[10] |
Farren M, Matthew S P, Hayes P C. Reduction of solid wustite in H2/H2O/CO/CO2 gas mixtures[J]. Metallurgical Transactions B, 1990, 21B (2): 135. doi: 10.1007%2FBF02658125.pdf
|
[11] |
Rodriguez R A D, Conejo A N. Kinetics of reduction of Fe2O3 particles with H2-CO mixtures at low temperatures[J]. Iron Making and Stelling, 2003(1): 25. https://www.researchgate.net/publication/273831660_Kinetics_of_Reduction_of_Fe2O3_Particles_with_H2-CO_Mixtures_at_Low_Temperalures
|
[12] |
赵沛, 郭培民, 张殿伟.低温非平衡条件下氧化铁还原顺序研究[J].钢铁, 2006, 41(8): 12. http://www.cnki.com.cn/Article/CJFDTOTAL-GANT200608001.htm
|
[13] |
赵沛, 郭培民.纳米冶金技术的研究及前景[C]//中国钢铁年会论文集(3卷), 北京:冶金工业出版社, 2005: 677.
|
[14] |
赵沛, 郭培民.利用粉体纳米晶化促进低温冶金反应的研究[J].钢铁, 2005, 40(6): 6. http://www.cnki.com.cn/Article/CJFDTOTAL-GANT200506002.htm
|
[15] |
庞建明, 郭培民, 赵沛, 等.低温下氢气还原氧化铁的动力学研究[J].钢铁, 2008, 43(7): 7. http://www.cnki.com.cn/Article/CJFDTOTAL-GANT200807002.htm
|
[16] |
李建, 朱锦明, 林金嘉, 等.对COREX竖炉煤气反窜的初步认识[J].宝钢技术, 2011(6): 33. http://www.cnki.com.cn/Article/CJFDTOTAL-BGJS201106010.htm
|
[17] |
徐辉, 李建, 吴胜利, 等. COREX竖炉布料过程中粉尘运动的DPM-CFD模拟[C]//2010年宝钢学术年会论文集, 上海:上海科技文献出版社, 2010: A93.
|
[18] |
李维国.COREX-3000生产现状和存在问题的分析[J].宝钢技术, 2008(6): 11. http://www.cnki.com.cn/Article/CJFDTOTAL-BGJS200806004.htm
|
[19] |
Pinegar H K, Moats M S, Sohn H Y. Process simulation and economic feasibility analysis for a hydrogen-based novel suspension ironmaking technology[J]. Steel Research Int, 2011, 82(8): 951. doi: 10.1002/srin.201000288
|
[20] |
郭培民, 庞建明, 赵沛, 等.氢气还原1~3 mm铁矿粉的动力学研究[J].钢铁, 2010, 45(1): 19. http://www.cnki.com.cn/Article/CJFDTOTAL-GANT201001006.htm
|
[21] |
Weiss B, Stum J, Voglsam S, et al. Structural and morphological changes during reduction of hematite to magnetite and wustite in hydrogen rich reduction gases under fluidized bed conditions[J].Ironmaking and Steelmaking, 2011, 38(1): 65. doi: 10.1179/030192310X12700328926065
|
[22] |
Tateo U, Hideki O N, Kirokazu K, et al. Effect of hydrogen on reduction of iron ore aggromerates with H2-CO[J]. The Iron and Steel Institute of Japan, 2009, 22: 270.
|
[1] | LIAO Ruixiong, LI Ziwei, LEI Jingang, LIU Zeyuan, WANG Haizhong, LAI Fulin, WANG Boyuan, ZHANG Qian. LiF doping improving the ionic conductivity of the Li1.1Ta0.9Zr0.1SiO5 solid electrolyte at room temperature[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 58-66. DOI: 10.13264/j.cnki.ysjskx.2022.06.008 |
[2] | ZOU Jin, HU Shun, LONG Qianqian, LI Baobao, ZHONG Shengwen. A multidimensional binary conductive agent on LiNi0.5Co0.2Mn0.3O2 battery performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 63-68. DOI: 10.13264/j.cnki.ysjskx.2022.03.009 |
[3] | HAO Tingting, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Investigation of the physicochemical properties of AlF3-(Li, Na)F-(Al2O3-Y2O3) melt[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 10-15. DOI: 10.13264/j.cnki.ysjskx.2022.02.002 |
[4] | ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005 |
[5] | SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009 |
[6] | BAO Morigengaowa, WANG Zhaowen, GAO Bingliang, SHI Zhongning, HU Xianwei. Simple and highly effective new way of measuring electrical conductivity of molten salts[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 8-12. DOI: 10.13264/j.cnki.ysjskx.2016.06.002 |
[7] | LI Haozhe, GONG Shuchu, YANG Bao, ZHANG Jia, ZHANG Hong. Electrical conductivity and temperature sensitivity of W/F-modified CuO-based ceramics[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 54-59. DOI: 10.13264/j.cnki.ysjskx.2016.02.010 |
[8] | YAO Xi, GUO Hanjie, LI Yongqi, SUN Guanyong, LI Lin. Research on the Direct Reduction of Magnetite for different reducing conditions by Hydrogen[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 12-16. DOI: 10.13264/j.cnki.ysjskx.2015.05.003 |
[9] | LIAO Chun-fa, WANG Kun, WANG Xu, YANG Shao-hua, FANG Meng-zhao. Electrical conductivity of NaCl-CaCl2-CaWO4 molten salt system[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 19-22. DOI: 10.13264/j.cnki.ysjskx.2013.05.020 |
[10] | SHAO Guo-qiang, LI Lv. Mineralizer Effects on Conductivity of Nano-Alumina Aqueous Dispersions[J]. Nonferrous Metals Science and Engineering, 2007, 21(3): 23-25. |