Citation: | LI Haozhe, GONG Shuchu, YANG Bao, ZHANG Jia, ZHANG Hong. Electrical conductivity and temperature sensitivity of W/F-modified CuO-based ceramics[J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 54-59. DOI: 10.13264/j.cnki.ysjskx.2016.02.010 |
[1] |
JADHAV R N, PURI V. Influence of copper substitution on structural, electrical and dielectric properties of Ni(1-x)CuxMn2O4 (0≤x≤1) ceramics[J]. Journal of Alloys and Compounds, 2010, 507: 151-156. doi: 10.1016/j.jallcom.2010.07.143
|
[2] |
FELTA A, POLZL W. Spinel forming ceramics of the system FexNiyMn3-x-yO4 for high temperature NTC thermistor applications[J]. Journal of the European Ceramic Society, 2000, 20: 2353-2366. doi: 10.1016/S0955-2219(00)00140-0
|
[3] |
PARK K, LEE J K. The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95-xNi0.45Co0.15Cu0.45ZnxO4 (0≤x≤0.3) NTC thermistors[J]. Journal of Alloys and Compounds, 2009, 475(1/2): 513-517. doi: 10.1016/j.jallcom.2008.07.076
|
[4] |
ZHAO C H, WANG B Y, YANG P H, et al. Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics[J]. Journal of the European Ceramic Society, 2008, 28(1): 35-40. doi: 10.1016/j.jeurceramsoc.2007.06.007
|
[5] |
XUE D, ZHANG H, LI Y Y, et al. Electrical properties of hexagonal BaTi1-xFexO3-δ (x=0.1, 0.2, 0.3) ceramics with NTC effect[J]. Journal of Materials Science: Materials in Electronics: 2012, 23(7): 1306-1312. doi: 10.1007/s10854-011-0589-1
|
[6] |
YUAN C, WU X, HUANG J, et al. Electrical properties of thick film NTC thermistors based on SrFe0.9Sn0.1O3-δ[J].Solid State Sciences, 2010, 12(12): 2113-2119. doi: 10.1016/j.solidstatesciences.2010.09.008
|
[7] |
WANG J, ZHANG H, XUE D, et al. Electrical properties of hexagonal BaTi0.8Co0.2O3-δ ceramic with NTC effect[J]. Journal of Physics: D. Applied Physics, 2009, 42(23): 235103. doi: 10.1088/0022-3727/42/23/235103
|
[8] |
LIU X, LUO Y, LI X. Electrical properties of BaTiO3-based NTC ceramics doped by BaBiO3 and Y2O3[J]. Journal of Alloys and Compounds, 2008, 459(1/2): 45-50. doi: 10.1016/j.jallcom.2007.05.010
|
[9] |
朱振峰, 黄剑锋, 曹丽云. SnO2基NTC热敏陶瓷性能及结构的研究[J].武汉理工大学学报, 2002, 24(8): 16-18.
|
[10] |
欧阳攀, 张鸿, 李根, 等.磷锑共掺SnO2陶瓷的电阻-温度特性[J].电子元件与材料, 2012, 31(6): 10-14.
|
[11] |
李根, 陈景超, 胡湛, 等. Sb掺杂SnO2基NTC热敏陶瓷的制备与电学特性[J].材料科学与工程学报, 2012, 30(2): 197-201.
|
[12] |
ZHANG Y, WU Y, ZHANG H, et al. Characterization of negative temperature coefficient of resistivity in (Sn1-xTix)0.95Sb0.05O2 (x≤0.1) ceramics[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5552-5559. doi: 10.1007/s10854-014-2343-y
|
[13] |
OUYANG P, ZHANG H, ZHANG Y, et al. Zr-substituted SnO2-based negative temperature coefficient thermistors with wide application temperature and high property stability[J]. Journal of Materials Science: Materials in Electronics, 2015, 26: 6163-6169. doi: 10.1007/s10854-015-3197-7
|
[14] |
崔化, 衡秋丽, 肖峰, 等.纳米CuO:不同形貌的制备及对高氯酸铵热分解催化性能[J].无机化学学报, 2009, 25(2): 359-363. http://www.cnki.com.cn/Article/CJFDTOTAL-WJHX200902031.htm
|
[15] |
钟明龙. CuO纳米线的简单热氧化制备及其气敏特性[J].有色金属科学与工程, 2013, 4(4): 47-50. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2013040008
|
[16] |
JAN T, IQBAL J, MANSOOR Q, et al. Synthesis, physical properties and antibacterial activity of Ce doped CuO: a novel nanomaterial[J]. Journal of Physics D: Applied Physics, 2014, 47: 355301. doi: 10.1088/0022-3727/47/35/355301
|
[17] |
GAO W, YANG S, YANG S, et al. Synthesis and magnetic properties of Mn doped CuO nanowires[J]. Physics Letters, 2010, A375: 180-182.
|
[18] |
SHAIKH J S, PAWAR R C, DEVAN R S, et al. Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on bronsted acidic ionic liqui[J]. Electrochimica Acta, 2011, 56: 2127-2134. doi: 10.1016/j.electacta.2010.11.046
|
[19] |
CHEN W, ZHANG H, MA Z, et al. High electrochemical performance and lithiation-delithiation phase evolution in CuO thin films for Li-ion storage[J]. Journal of Materials Chemistry A, 2015, 3: 14202-14209. doi: 10.1039/C5TA02524A
|
[20] |
LIU K L, YUAN S L, DUAN H N, et al. A comparative study on the magnetic properties of Fe-doped CuO nanopowders prepared by sol-gel and co-precipitation method[J]. Materials Letters, 2010, 64: 192-194. doi: 10.1016/j.matlet.2009.10.043
|
[21] |
ZHANG Z, WANG P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy[J]. Journal of Materials Chemistry, 2012, 22: 2456-2464. doi: 10.1039/C1JM14478B
|
[22] |
YANG B, ZHANG H, ZHANG J, et al. Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 10151-10158. doi: 10.1007/s10854-015-3701-0
|
[23] |
张勇, 廖莉玲, 邹文静, 等. NTC热敏电阻材料的制备、性能优化及相关机理的研究进展[J].材料导报, 2010, 24(1): 310-312. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2010S1096.htm
|
[1] | WU Yukun, LI Zhengquan, WANG Yide, XU Zhiheng, LI Kaixuan, SHI Haoyu. Research on stirring process based on artificial neural network and multi-phase flow simulation technology[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 801-813. DOI: 10.13264/j.cnki.ysjskx.2024.06.003 |
[2] | GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006 |
[3] | ZHANG Jing, HUANG Qizhou, FANG Wenhua, YANG Qing. Numerical simulation and process parameters optimization of electromagnetic stirrer with multi-mode magnetic field[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 34-42. DOI: 10.13264/j.cnki.ysjskx.2020.06.005 |
[4] | WAN Zhanghao, XU Zhifeng, HUANG Jindi, YAN Kang. Three-phase stirring simulation of H2SO4-O2-copper anode slime and grey comprehensive evaluation in vertical reactor[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 21-28. DOI: 10.13264/j.cnki.ysjskx.2018.04.004 |
[5] | DU Kaiping, ZHAO Shiqiang, WU Shengli. Numerical simulation of smelting characteristics around raceway in melter gasifier[J]. Nonferrous Metals Science and Engineering, 2017, 8(2): 8-13. DOI: 10.13264/j.cnki.ysjskx.2017.02.002 |
[6] | DENG Keyue, LIU Zheng, ZHANG Jiayi, WU Qiang. Distribution rule of rare earth in aluminum melt under electromagnetic stirring[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 40-46. DOI: 10.13264/j.cnki.ysjskx.2016.03.008 |
[7] | XIE Yong, HE Wen, LIU Xianjun, XIE Tao, HUANG Xiangtao. Acoustic emission characteristics for filling body during tensile tests and its numerical simulation[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 94-99. DOI: 10.13264/j.cnki.ysjskx.2015.03.018 |
[8] | ZHAO Fei, ZHANG Yanling, ZHU Rong, ZHAO Shiqiang. Numerical simulation of effect of preheating temperature on supersonic oxygen jet characteristics[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 34-37. DOI: 10.13264/j.cnki.ysjskx.2014.06.006 |
[9] | FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006 |
[10] | CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17. |