Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Hejia, CHEN Liqing, WANG Wenguang, SUN Jing, WANG Quanzhao. Main factors influencing preparation of ultra-fine grained WC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 47-52. DOI: 10.13264/j.cnki.ysjskx.2014.06.008
Citation: ZHANG Hejia, CHEN Liqing, WANG Wenguang, SUN Jing, WANG Quanzhao. Main factors influencing preparation of ultra-fine grained WC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 47-52. DOI: 10.13264/j.cnki.ysjskx.2014.06.008

Main factors influencing preparation of ultra-fine grained WC-10Co cemented carbide

More Information
  • Received Date: August 25, 2014
  • Published Date: December 30, 2014
  • By using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and measuring mechanical behaviors, microstructures of WC and Co powders with different initial particle sizes are investigated after different times of ball milling. The ball milled composite powders with different percentage of grain growth inhibitors are vacuum hot-pressed and sintered to prepare ultra-fine grained cemented carbides and the microstructure and mechanical properties of the as-prepared cemented carbide are studied to reveal the effect of grain growth inhibitors of different proportions. The results show that the ultra-fine raw powder material has a good effect after a short time of ball milling; the grain refining effect in cemented carbide by adding VC+Cr3C2 or VC+TaC is better than that of the sole adding of VC; the WC particles has a near round shape and the bending strength of the cemented carbide can be improved by adding Cr3C2; the WC particles take shapes of triangle or quadrilateral after adding Tac which can improve the hardness of cemented carbide.
  • [1]
    Fang Z G, Eason J W. Study of nanostructured WC-Co Composites[J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(5): 297-303. doi: 10.1016/0263-4368(95)92675-A
    [2]
    Brookes K. Some tribulation on the way to a nano future for hardmetals [J]. Metal Powder Report, 2005, 60(12): 26-28. https://www.researchgate.net/publication/279553955_Some_Tribulation_on_the_Way_to_a_Nano_Future_for_Hardmetals
    [3]
    李壮, 王家君, 林晨光, 等. WC-Co超细硬质合金微观结构对其性能的影响[J].硬质合金, 2009, 26(3): 188-193. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ200903013.htm
    [4]
    张忠健, 汪晓, 李仁琼, 等.中国硬质合金产业的技术进步[J].硬质合金, 2007, 24(1): 33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ200701009.htm
    [5]
    陈亚军.超细WC-Co硬质合金的制备与性能研究[J].硬质合金, 2008, 25(3): 158-165. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ200803009.htm
    [6]
    Goren-Muginstein G R, Berger S, Rosen A. Sintering study of nanocrystalline tungsten carbide powder[J]. Nanostructured Materials, 1998, 10(5): 795-804. doi: 10.1016/S0965-9773(98)00116-0
    [7]
    Sommer M, Schubert W D, Zobetz E, et al. On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys[J]. International Journal of Refractory Metals and Hard Materials, 2002, 20(1): 41-50. doi: 10.1016/S0263-4368(01)00069-5
    [8]
    Adorjan A, Schubert W D, Schön A, et al. WC grain growth during the early stages of sintering[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(5): 365-373. doi: 10.1016/j.ijrmhm.2005.11.009
    [9]
    Fang Z, Maheshwari P, Wang X, et al. R Riley. An experimental study of the sintering of nanocrystalline WC-Co powders[J]. International Journal of Refractory Metals and Hard Materials, 2005, 23(4/5/6): 249-257. https://www.researchgate.net/publication/228489794_An_Experimental_Study_of_the_Sintering_of_Nanocrystalline_WC-Co_Powders
    [10]
    张伟, 蒋勇.在YT15硬质合金中添加稀土的新工艺[J].稀有金属与硬质合金, 1992 (4): 4-8. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY199204001.htm
    [11]
    李斌书.稀土添加方法对硬质合金物理力学性能和使用性能的影响[J].硬质合金, 1996, 13(1): 15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ199601003.htm
    [12]
    刘沙, 刘刚, 杨贵彬, 等.纳米稀土硬质合金原料粉末的制备及研究[J].稀有金属与硬质合金, 2004 (1): 22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-XYJY200401007.htm
    [13]
    颜杰, 唐楷, 黄新, 等.硬质合金生产中的增氧反应及其影响[J].硬质合金, 2006, 23(4): 218-221. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ200604007.htm
    [14]
    颜杰, 邵旭, 唐楷, 等. WC/Co类硬质合金粉末在烧结工艺前的增氧途径[J].粉末冶金工业, 2011, 21(1): 33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-FMYG201101012.htm
    [15]
    唐楷, 颜杰, 黄新, 等.硬质合金制备中增氧脏化反应的研究[J].材料研究与应用, 2009, 3(2): 127-130. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYS200902014.htm
    [16]
    邹洪伟, 叶金文, 刘颖, 等.原料粉末碳、氧含量对无粘结相硬质合金性能的影响[J].功能材料, 2010, 41(1): 90-93. http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201001029.htm
    [17]
    Gille G, Szesny B, Dreyer K, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts[J]. International Journal of Refractory Metals and Hard Materials, 2002, 20(1): 3-22. doi: 10.1016/S0263-4368(01)00066-X
    [18]
    da Silvaa A G P, Schubertb W D, Lux B. The role of the binder phase in the WC-Co sintering[J]. Materials Research, 2001, 4(2): 59-62. http://industry.wanfangdata.com.cn/yj/Detail/ExternalResource?id=jxysjs201406009%5e18
    [19]
    覃群, 王天国, 张云宋.超细WC-Co硬质合金复合粉末的研究进展[J].硬质合金, 2010, 27(5): 311-315. http://www.cnki.com.cn/Article/CJFDTOTAL-YZHJ201005015.htm
    [20]
    张立, 吴冲浒, 陈述, 等.晶粒生长抑制剂在硬质合金中的微观行为[J].粉末冶金材料科学与工程, 2010, 15(6) :667-673. http://www.cnki.com.cn/Article/CJFDTOTAL-FMGC201006025.htm
    [21]
    Zhao S X, Song X Y, Zhang J X, et al. Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC-Co alloy[J]. Materials Science and Engineering A, 2008, 473(1/2): 323-329. http://www.docin.com/p-1383449804.html
    [22]
    Wang X, Fang Z Z, Hong Y S. Grain growth during the early stage of sintering of nano-sized WC-Co powder[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(3): 232-241. doi: 10.1016/j.ijrmhm.2007.04.006
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MAO Pengyan, ZHAO Hui, LI Hongda. Effect of Al content on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 867-876. DOI: 10.13264/j.cnki.ysjskx.2024.06.010
    [3]FENG Tian, KONG Jian, ZHANG Yong, ZHAO Yonghao. The effects of cold rolling thickness reduction and path on the microstructure and mechanical properties of NiCoCr alloy[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 212-219. DOI: 10.13264/j.cnki.ysjskx.2024.02.008
    [4]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [5]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [6]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [7]OUYANG Shuilin, JIANG Junpeng, ZHONG Zhiqiang, QIU Lianchang, YANG Qiumin, TAN Zhuopeng, LEI Zhijun, CHEN Hao. Effect of TiN content on microstructure structure and properties of WC-TiC-TaNbC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2022.04.007
    [8]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [9]LUO Haiyun, KUANG Quanbo, WANG Richu. Microstructure and mechanical properties of spray deposited Al-Mg-Li Alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 66-71. DOI: 10.13264/j.cnki.ysjskx.2019.04.011
    [10]ZHONG Zhenchen, ZENG Qingwen, JIANG Qingzheng, SAJJAD Ur Rehman, LEI Weikai, HE Lunke. Effect of Y substitution on the microstructure and magnetic properties of Pr-Nd-Fe-B alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 99-103. DOI: 10.13264/j.cnki.ysjskx.2019.03.017
  • Cited by

    Periodical cited type(4)

    1. 吴梓坚,谢昊,王子生,雷国莉,吴琼. 磁性材料居里温度测量结果影响因素分析. 稀有金属. 2025(01): 146-152 .
    2. 杨大伟,钱进,王鑫. Inconel 718合金辐照损伤研究进展. 稀有金属. 2024(04): 552-563 .
    3. 何若诗,刘鹏飞,张嘉诚,冯路路. Ni对水果辅助采摘设备用不锈钢组织及性能的影响. 南方金属. 2024(03): 42-45 .
    4. 邓胜强,高阳,李霄亭,孙德建,高卡,汪娟. 热压烧结超细晶WC-Co硬质合金致密化及性能研究. 稀有金属. 2024(11): 1565-1573 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (57) PDF downloads (3) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return