Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
OUYANG Shuilin, JIANG Junpeng, ZHONG Zhiqiang, QIU Lianchang, YANG Qiumin, TAN Zhuopeng, LEI Zhijun, CHEN Hao. Effect of TiN content on microstructure structure and properties of WC-TiC-TaNbC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2022.04.007
Citation: OUYANG Shuilin, JIANG Junpeng, ZHONG Zhiqiang, QIU Lianchang, YANG Qiumin, TAN Zhuopeng, LEI Zhijun, CHEN Hao. Effect of TiN content on microstructure structure and properties of WC-TiC-TaNbC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2022.04.007

Effect of TiN content on microstructure structure and properties of WC-TiC-TaNbC-10Co cemented carbide

More Information
  • Received Date: September 27, 2021
  • Revised Date: December 27, 2021
  • Available Online: September 02, 2022
  • The one-step sintering method was used to study effect of TiN addition on the microstructure and properties of cemented carbide by changing its amount in the raw material. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction analyzer (XRD), surface roughness analyzer, and scratch tester were selected to investigate the effect of TiN addition on the physical-mechanical properties, microstructure, phase composition, surface topography and coating adhesion of WC-TiC-TaNbC-10Co cemented carbide. The results showed that with TiN content increasing in the range of 0~1.6%, the magnetic saturation and density of the carbide decreased, and its coercive, hardness, and bending strength increased. The thickness of its cubic carbide-free layer increased, surface roughness decreased first and then increased, and the adhesion strength of the CVD coating increased first and then decreased. The best CVD coating adhesion strength was detected for the cemented carbide with the TiN of 0.8%.
  • [1]
    王云, 谢小豪, 汪艳亮, 等. 硬质合金刀具涂层的研究进展[J]. 有色金属科学与工程, 2019, 10(1): 60-66. doi: 10.13264/j.cnki.ysjskx.2019.01.010
    [2]
    EKROTH M, FRYKHOLM R, LINDHOLM M, et al. Gradient zones in WC-Ti(C, N)-Co-based cemented carbides: experimental study and computer simulations[J]. Acta Materialia, 2000, 48(9): 2177-2185. doi: 10.1016/S1359-6454(00)00029-X
    [3]
    张武装, 刘咏, 贺跃辉, 等. 涂层梯度硬质合金的研究进展[J]. 功能材料, 2006, 37(10): 1531-1534. doi: 10.3321/j.issn:1001-9731.2006.10.003
    [4]
    TSUDA K, IKEGAYA A, ISOBE K, et al. Development of functionally graded sintered hard materials[J]. Powder Metallurgy, 1996, 39(4): 296-300. doi: 10.1179/pom.1996.39.4.296
    [5]
    尹飞, 陈康华, 王社权, 等. 基体的梯度结构对涂层硬质合金性能的影响[J]. 中南大学学报(自然科学版), 2005, 36(5): 776-779. doi: 10.3969/j.issn.1672-7207.2005.05.011
    [6]
    杨晋伟, 史留勇, 周腾, 等. 不含氮原料制备脱β层梯度硬质合金的机理研究[J]. 稀有金属与硬质合金, 2017, 45(4): 76-81.
    [7]
    程登峰, 孙东平, 刘娜娜. Ti(C, N)含量和烧结温度对梯度硬质合金脱β层厚度的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 47-54.
    [8]
    陈芝强, 方海旋, 杨晋伟, 等. Co含量对脱β层梯度硬质合金的影响[J]. 热带农业工程, 2018, 42(2): 54-58.
    [9]
    唐俊, 熊计, 郭智兴. WC粒度对梯度硬质合金组织和性能的影响[J]. 硬质合金, 2015, 32(6): 364-371.
    [10]
    陈楚轩, 黄鸿宇. WC-Co硬质合金的相对磁饱和[J]. 中国钨业, 2009, 24(5): 81-85. doi: 10.3969/j.issn.1009-0622.2009.05.018
    [11]
    谢文, 黄文亮, 黄前葆, 等. WC-10%Co合金烧结过程中组织演变与矫顽磁力变化[J]. 硬质合金, 2012, 29(6): 344-356. doi: 10.3969/j.issn.1003-7292.2012.06.002
    [12]
    张景峰, 杜勇, 张伟彬, 等. 烧结碳势对梯度硬质合金组织结构的影响[J]. 硬质合金, 2018, 35(4): 235-248.
    [13]
    FRYKHOLM R, EKROTH M, JANSSON B, et al. Effect of cubic phase composition on gradient zone formation in cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(4/5/6): 527-538.
    [14]
    GARCIA J. Investigations on kinetics of formation of fcc-free surface layers on cemented carbides with Fe-Ni-Co binders[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 306-311. doi: 10.1016/j.ijrmhm.2010.12.007
    [15]
    SUZUKI H, HAYASHI K, TANIGUCHI Y. Theβ-free layer formed near the surface of vacuum-sintered WC-β-co alloys containing nitrogen[J]. Transactions of the Japan Institute of Metals, 1981, 22(11): 758-764. doi: 10.2320/matertrans1960.22.758
    [16]
    MILMAN Y V, LUYCKX S, NORTHROP I. Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys[J]. International Journal of Refractory Metals and Hard Materials, 1999, 17(1/2/3): 39-44.
    [17]
    SCHWARZKOPF M, EXNER H E, FISCHMEISTER H F, et al. Kinetics of compositional modification of (W, Ti)C-WC-Co alloy surfaces[J]. Materials Science and Engineering: A, 1988, 105/106: 225-231. doi: 10.1016/0025-5416(88)90500-9
    [18]
    ZHANG W, DU Y, PENG Y, et al. Experimental investigation and simulation of the effect of Ti and N contents[J]. Int J Refract Met Hard Mater, 2013, 41: 638-647. doi: 10.1016/j.ijrmhm.2013.08.002
    [19]
    黄树涛, 姚英学, 袁哲俊. 基体表面粗糙度对金刚石薄膜涂层刀具附着强度的影响[J]. 制造技术与机床, 2000(2): 44. doi: 10.3969/j.issn.1005-2402.2000.02.019
    [20]
    陈响明. 硬质合金刀具TiN-TiCN-Al2O3-TiN多层复合涂层制备与组织性能研究[D]. 长沙: 中南大学, 2012.
    [21]
    NARASIMHAN K. Titanium carbonitride coated cemented carbide and cutting inserts made from the same: US6056999[P]. 2000-05-02.
  • Cited by

    Periodical cited type(3)

    1. 刘帅. 岩土工程勘察边坡监测方案设计及稳定性分析研究. 价值工程. 2025(03): 147-149 .
    2. 杜志锦,黄宁,苏杰,张茂微,邵金虎,张晓悟. 基于Geo-Studio的露天采场边坡稳定性研究. 中国钼业. 2024(01): 15-19 .
    3. 李锦锋,李峰,陈梦宇. 无土纤维喷播绿化技术在红砂岩边坡中的应用. 内蒙古公路与运输. 2024(05): 11-14 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (215) PDF downloads (14) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return