Citation: | OUYANG Shuilin, JIANG Junpeng, ZHONG Zhiqiang, QIU Lianchang, YANG Qiumin, TAN Zhuopeng, LEI Zhijun, CHEN Hao. Effect of TiN content on microstructure structure and properties of WC-TiC-TaNbC-10Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 54-60. DOI: 10.13264/j.cnki.ysjskx.2022.04.007 |
[1] |
王云, 谢小豪, 汪艳亮, 等. 硬质合金刀具涂层的研究进展[J]. 有色金属科学与工程, 2019, 10(1): 60-66. doi: 10.13264/j.cnki.ysjskx.2019.01.010
|
[2] |
EKROTH M, FRYKHOLM R, LINDHOLM M, et al. Gradient zones in WC-Ti(C, N)-Co-based cemented carbides: experimental study and computer simulations[J]. Acta Materialia, 2000, 48(9): 2177-2185. doi: 10.1016/S1359-6454(00)00029-X
|
[3] |
张武装, 刘咏, 贺跃辉, 等. 涂层梯度硬质合金的研究进展[J]. 功能材料, 2006, 37(10): 1531-1534. doi: 10.3321/j.issn:1001-9731.2006.10.003
|
[4] |
TSUDA K, IKEGAYA A, ISOBE K, et al. Development of functionally graded sintered hard materials[J]. Powder Metallurgy, 1996, 39(4): 296-300. doi: 10.1179/pom.1996.39.4.296
|
[5] |
尹飞, 陈康华, 王社权, 等. 基体的梯度结构对涂层硬质合金性能的影响[J]. 中南大学学报(自然科学版), 2005, 36(5): 776-779. doi: 10.3969/j.issn.1672-7207.2005.05.011
|
[6] |
杨晋伟, 史留勇, 周腾, 等. 不含氮原料制备脱β层梯度硬质合金的机理研究[J]. 稀有金属与硬质合金, 2017, 45(4): 76-81.
|
[7] |
程登峰, 孙东平, 刘娜娜. Ti(C, N)含量和烧结温度对梯度硬质合金脱β层厚度的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 47-54.
|
[8] |
陈芝强, 方海旋, 杨晋伟, 等. Co含量对脱β层梯度硬质合金的影响[J]. 热带农业工程, 2018, 42(2): 54-58.
|
[9] |
唐俊, 熊计, 郭智兴. WC粒度对梯度硬质合金组织和性能的影响[J]. 硬质合金, 2015, 32(6): 364-371.
|
[10] |
陈楚轩, 黄鸿宇. WC-Co硬质合金的相对磁饱和[J]. 中国钨业, 2009, 24(5): 81-85. doi: 10.3969/j.issn.1009-0622.2009.05.018
|
[11] |
谢文, 黄文亮, 黄前葆, 等. WC-10%Co合金烧结过程中组织演变与矫顽磁力变化[J]. 硬质合金, 2012, 29(6): 344-356. doi: 10.3969/j.issn.1003-7292.2012.06.002
|
[12] |
张景峰, 杜勇, 张伟彬, 等. 烧结碳势对梯度硬质合金组织结构的影响[J]. 硬质合金, 2018, 35(4): 235-248.
|
[13] |
FRYKHOLM R, EKROTH M, JANSSON B, et al. Effect of cubic phase composition on gradient zone formation in cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(4/5/6): 527-538.
|
[14] |
GARCIA J. Investigations on kinetics of formation of fcc-free surface layers on cemented carbides with Fe-Ni-Co binders[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 306-311. doi: 10.1016/j.ijrmhm.2010.12.007
|
[15] |
SUZUKI H, HAYASHI K, TANIGUCHI Y. Theβ-free layer formed near the surface of vacuum-sintered WC-β-co alloys containing nitrogen[J]. Transactions of the Japan Institute of Metals, 1981, 22(11): 758-764. doi: 10.2320/matertrans1960.22.758
|
[16] |
MILMAN Y V, LUYCKX S, NORTHROP I. Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys[J]. International Journal of Refractory Metals and Hard Materials, 1999, 17(1/2/3): 39-44.
|
[17] |
SCHWARZKOPF M, EXNER H E, FISCHMEISTER H F, et al. Kinetics of compositional modification of (W, Ti)C-WC-Co alloy surfaces[J]. Materials Science and Engineering: A, 1988, 105/106: 225-231. doi: 10.1016/0025-5416(88)90500-9
|
[18] |
ZHANG W, DU Y, PENG Y, et al. Experimental investigation and simulation of the effect of Ti and N contents[J]. Int J Refract Met Hard Mater, 2013, 41: 638-647. doi: 10.1016/j.ijrmhm.2013.08.002
|
[19] |
黄树涛, 姚英学, 袁哲俊. 基体表面粗糙度对金刚石薄膜涂层刀具附着强度的影响[J]. 制造技术与机床, 2000(2): 44. doi: 10.3969/j.issn.1005-2402.2000.02.019
|
[20] |
陈响明. 硬质合金刀具TiN-TiCN-Al2O3-TiN多层复合涂层制备与组织性能研究[D]. 长沙: 中南大学, 2012.
|
[21] |
NARASIMHAN K. Titanium carbonitride coated cemented carbide and cutting inserts made from the same: US6056999[P]. 2000-05-02.
|
1. |
刘帅. 岩土工程勘察边坡监测方案设计及稳定性分析研究. 价值工程. 2025(03): 147-149 .
![]() | |
2. |
杜志锦,黄宁,苏杰,张茂微,邵金虎,张晓悟. 基于Geo-Studio的露天采场边坡稳定性研究. 中国钼业. 2024(01): 15-19 .
![]() | |
3. |
李锦锋,李峰,陈梦宇. 无土纤维喷播绿化技术在红砂岩边坡中的应用. 内蒙古公路与运输. 2024(05): 11-14 .
![]() |