Citation: | ZHONG Jian-hua, TANG Zhi-li, LIN Shi-peng, LIU Yan-xia, YUAN Zhi-yan. Numerical simulation of heat transfer process for low finned tube and its result analysis[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 33-38. DOI: 10.13264/j.cnki.ysjskx.2014.02.006 |
[1] |
程菲,苏保玲.翅片管的传热分析及其表面几何参数的优化[J].建筑热能通风空调,2003(4):44-48. http://www.cnki.com.cn/Article/CJFDTOTAL-JZRK200304015.htm
|
[2] |
李志敏,周赞庆,刘晓玲.螺旋翅片管换热器的优化设计[J].节能,2005(1):19-21. http://www.cnki.com.cn/Article/CJFDTOTAL-JNJN200501007.htm
|
[3] |
李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2008.
|
[4] |
钟建华,冯凯,唐治立.多头螺旋管结构参数的优化设计研究[J].有色金属科学与工程,20134(1):49-52. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201301010
|
[5] |
连之伟,孙德兴.热质交换原理与设备[M].北京:中国建筑工业出版社,2011.
|
[6] |
张国智,胡仁喜,陈继刚,等.ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
|
[7] |
冯凯.多头螺旋管换热过程的数值模拟及其结构优化[D].赣州:江西理工大学,2012. http://cdmd.cnki.com.cn/Article/CDMD-10407-1014101969.htm
|
[8] |
赵镇南(译).对流传热与传质[M].北京:高等教育出版社,2007.
|
[9] |
邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007
|
[10] |
翟庆良.湍流新理论及其应用[M].北京:冶金工业出版社,2009.
|
[11] |
邹华生,钟理,伍钦.流体力学与传热[M].广州:华南理工大学出版社,2004.
|
[12] |
雷勇.翅片管束传热及阻力特性的三维数值模拟[J].华北科技学院学报,20085(3):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ200803018.htm
|
[13] |
刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安:西安理工大学,2008. http://cdmd.cnki.com.cn/Article/CDMD-10700-2008161066.htm
|
[14] |
过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
|
[15] |
过增元.对流换热的物理机制及其控制[J].科学通报,200145(19):2118-2122. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200019019.htm
|
[16] |
马有福,袁益超,陈昱,等.翅片螺距对锯齿螺旋翅片换热管特性的影响[J].化工学报,201162(9):2484-2489. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201109015.htm
|
[1] | YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003 |
[2] | WANG Zhongfeng, FENG Yusheng, HUANG Weiling. Analysis of the influence of different structural configurations on the mixing efficiency of the guide tube mixing tank[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 814-821. DOI: 10.13264/j.cnki.ysjskx.2024.06.004 |
[3] | ZENG Yang, LIU Baipu, DENG Fei, LI Zhipeng. Research on optimizing structure parameters in Taoxikeng Tungsten Mine[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 70-75. DOI: 10.13264/j.cnki.ysjskx.2018.03.012 |
[4] | ZHAO Kui, LIU Weifa, ZENG Peng, ZHANG Liang. Optimization of structural parameters of deep stope based on combination weighting game theory[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 70-74. DOI: 10.13264/j.cnki.ysjskx.2018.02.012 |
[5] | ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015 |
[6] | DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008 |
[7] | LIU Baipu, LIU Jiangchao, DENG Fei, XIAO Wei, TAO Ming, GAO Xiang. Optimization of structure parameters of gently inclined ore body by numerical simulation[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 103-108. DOI: 10.13264/j.cnki.ysjskx.2016.04.018 |
[8] | ZHONG Jian-Hua, FENG Kai, TANG Zhi-Li. Optimal design of multi-start spiral pipe's structural parameters[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2013.01.003 |
[9] | LAN Xiao-ji, HAN Li-qin, WANG Zhi-hong. On the Systematic Structure and Key Technologies of GMLGIS[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 72-75. |
[10] | CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17. |
1. |
朱宁远,陈秋明,陈世豪,左寿彬. TC11钛合金动态回复与动态再结晶高温本构模型研究. 有色金属科学与工程. 2024(01): 58-66 .
![]() | |
2. |
杨兴远,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 锻造变形对扩散连接TC4钛合金的影响. 有色金属科学与工程. 2023(04): 527-535 .
![]() | |
3. |
王继航,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 人工植入缺陷对增材制造TC4钛合金性能的影响规律. 有色金属科学与工程. 2023(05): 668-675 .
![]() | |
4. |
周琳,刘运玺,陈玮,付明杰. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图. 稀有金属. 2022(01): 27-35 .
![]() | |
5. |
杨云龙,王刚,檀财旺,王秒. CoFeCrNiCu高熵钎料钎焊ZrB_2-SiC/Nb接头组织及性能研究. 稀有金属. 2022(03): 306-314 .
![]() | |
6. |
吝媛,杨奇,黄拓,杨晓龙,刘伟,李梦. Ti9148钛合金β-相晶粒长大行为. 有色金属科学与工程. 2022(02): 93-97 .
![]() | |
7. |
薛阳,朱冬冬,陶锋,董多,王晓红,马腾飞. 钎焊温度对GH4169/AgCuTi+W/Si_3N_4的接头组织与力学性能的影响. 航空材料学报. 2022(06): 48-56 .
![]() | |
8. |
冯瑞,王克鲁,鲁世强,李鑫,程军,钟明君,周璇. BT25钛合金热变形过程临界损伤模型. 特种铸造及有色合金. 2020(06): 680-684 .
![]() | |
9. |
冯瑞,王克鲁,鲁世强,李鑫,欧阳德来,周璇,钟明君. 基于应变补偿和BP神经网络的BT25钛合金本构关系研究. 塑性工程学报. 2020(12): 183-190 .
![]() | |
10. |
赖曲芳,付鹏,杜兆新. 锻态Ti6Al4V合金的高温变形和热处理行为. 金属热处理. 2019(04): 52-58 .
![]() | |
11. |
李鹏飞,邓持清,林新博,齐亮,姚幼甫,徐高磊. 上引连铸TU1热变形行为研究. 有色金属科学与工程. 2019(03): 69-74 .
![]() | |
12. |
李华灿,李群芳,周治廷. 关于假设检验的两类错误. 东西南北. 2019(19): 215 .
![]() | |
13. |
刘欣,李强锋,汪志刚,张迎晖,谢健明,刘蔚宁. 低合金微碳钢的热变形行为及本构方程. 有色金属科学与工程. 2018(04): 53-59 .
![]() | |
14. |
邓同生,李尚,卢娇,刘鑫,康丽. 稀土元素对钛合金蠕变性能影响规律综述. 有色金属科学与工程. 2018(06): 94-98 .
![]() |