Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHONG Jian-hua, TANG Zhi-li, LIN Shi-peng, LIU Yan-xia, YUAN Zhi-yan. Numerical simulation of heat transfer process for low finned tube and its result analysis[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 33-38. DOI: 10.13264/j.cnki.ysjskx.2014.02.006
Citation: ZHONG Jian-hua, TANG Zhi-li, LIN Shi-peng, LIU Yan-xia, YUAN Zhi-yan. Numerical simulation of heat transfer process for low finned tube and its result analysis[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 33-38. DOI: 10.13264/j.cnki.ysjskx.2014.02.006

Numerical simulation of heat transfer process for low finned tube and its result analysis

More Information
  • Received Date: December 26, 2013
  • Published Date: April 29, 2014
  • ;With the low finned tubes used in the condenser as the research object,the two-dimensional model with the refrigerant (R22) flow in tube and the air flow outside tube is established by using the fluid heat transfer analysis module of ANSYS FLOTRAN CFD, and its fluid-structure interaction simulation is analyzed. Orthogonal experiments are performed to study the distribution of the flow field and temperature field for the heat transfer process. The following conclusions are drawn from the analysis with the heat transfer theory and fluerics theory; the heat transfer performance of finned tube is significantly better than that of the light pipe with the same heat flux; the heat transfer performance of finned tube is enhanced with the increase of the fin spacing and fin height and weakened with the increase of fin thickness within the specified range; but the pressure drop outside the tube is significantly weakened with the increase of fin height. The structure parameters of finned tube can be optimized with the overall consideration of the heat transfer performance and pressure drop.
  • [1]
    程菲,苏保玲.翅片管的传热分析及其表面几何参数的优化[J].建筑热能通风空调,2003(4):44-48. http://www.cnki.com.cn/Article/CJFDTOTAL-JZRK200304015.htm
    [2]
    李志敏,周赞庆,刘晓玲.螺旋翅片管换热器的优化设计[J].节能,2005(1):19-21. http://www.cnki.com.cn/Article/CJFDTOTAL-JNJN200501007.htm
    [3]
    李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2008.
    [4]
    钟建华,冯凯,唐治立.多头螺旋管结构参数的优化设计研究[J].有色金属科学与工程,20134(1):49-52. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201301010
    [5]
    连之伟,孙德兴.热质交换原理与设备[M].北京:中国建筑工业出版社,2011.
    [6]
    张国智,胡仁喜,陈继刚,等.ANSYS10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [7]
    冯凯.多头螺旋管换热过程的数值模拟及其结构优化[D].赣州:江西理工大学,2012. http://cdmd.cnki.com.cn/Article/CDMD-10407-1014101969.htm
    [8]
    赵镇南(译).对流传热与传质[M].北京:高等教育出版社,2007.
    [9]
    邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007
    [10]
    翟庆良.湍流新理论及其应用[M].北京:冶金工业出版社,2009.
    [11]
    邹华生,钟理,伍钦.流体力学与传热[M].广州:华南理工大学出版社,2004.
    [12]
    雷勇.翅片管束传热及阻力特性的三维数值模拟[J].华北科技学院学报,20085(3):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ200803018.htm
    [13]
    刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安:西安理工大学,2008. http://cdmd.cnki.com.cn/Article/CDMD-10700-2008161066.htm
    [14]
    过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [15]
    过增元.对流换热的物理机制及其控制[J].科学通报,200145(19):2118-2122. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200019019.htm
    [16]
    马有福,袁益超,陈昱,等.翅片螺距对锯齿螺旋翅片换热管特性的影响[J].化工学报,201162(9):2484-2489. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201109015.htm
  • Related Articles

    [1]YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003
    [2]WANG Zhongfeng, FENG Yusheng, HUANG Weiling. Analysis of the influence of different structural configurations on the mixing efficiency of the guide tube mixing tank[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 814-821. DOI: 10.13264/j.cnki.ysjskx.2024.06.004
    [3]ZENG Yang, LIU Baipu, DENG Fei, LI Zhipeng. Research on optimizing structure parameters in Taoxikeng Tungsten Mine[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 70-75. DOI: 10.13264/j.cnki.ysjskx.2018.03.012
    [4]ZHAO Kui, LIU Weifa, ZENG Peng, ZHANG Liang. Optimization of structural parameters of deep stope based on combination weighting game theory[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 70-74. DOI: 10.13264/j.cnki.ysjskx.2018.02.012
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [7]LIU Baipu, LIU Jiangchao, DENG Fei, XIAO Wei, TAO Ming, GAO Xiang. Optimization of structure parameters of gently inclined ore body by numerical simulation[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 103-108. DOI: 10.13264/j.cnki.ysjskx.2016.04.018
    [8]ZHONG Jian-Hua, FENG Kai, TANG Zhi-Li. Optimal design of multi-start spiral pipe's structural parameters[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 49-52. DOI: 10.13264/j.cnki.ysjskx.2013.01.003
    [9]LAN Xiao-ji, HAN Li-qin, WANG Zhi-hong. On the Systematic Structure and Key Technologies of GMLGIS[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 72-75.
    [10]CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17.
  • Cited by

    Periodical cited type(14)

    1. 朱宁远,陈秋明,陈世豪,左寿彬. TC11钛合金动态回复与动态再结晶高温本构模型研究. 有色金属科学与工程. 2024(01): 58-66 . 本站查看
    2. 杨兴远,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 锻造变形对扩散连接TC4钛合金的影响. 有色金属科学与工程. 2023(04): 527-535 . 本站查看
    3. 王继航,蔡雨升,姜沐池,任德春,吉海宾,雷家峰,肖旋. 人工植入缺陷对增材制造TC4钛合金性能的影响规律. 有色金属科学与工程. 2023(05): 668-675 . 本站查看
    4. 周琳,刘运玺,陈玮,付明杰. Ti-4Al-5Mo-6Cr-5V-1Nb合金的热变形行为及热加工图. 稀有金属. 2022(01): 27-35 .
    5. 杨云龙,王刚,檀财旺,王秒. CoFeCrNiCu高熵钎料钎焊ZrB_2-SiC/Nb接头组织及性能研究. 稀有金属. 2022(03): 306-314 .
    6. 吝媛,杨奇,黄拓,杨晓龙,刘伟,李梦. Ti9148钛合金β-相晶粒长大行为. 有色金属科学与工程. 2022(02): 93-97 . 本站查看
    7. 薛阳,朱冬冬,陶锋,董多,王晓红,马腾飞. 钎焊温度对GH4169/AgCuTi+W/Si_3N_4的接头组织与力学性能的影响. 航空材料学报. 2022(06): 48-56 .
    8. 冯瑞,王克鲁,鲁世强,李鑫,程军,钟明君,周璇. BT25钛合金热变形过程临界损伤模型. 特种铸造及有色合金. 2020(06): 680-684 .
    9. 冯瑞,王克鲁,鲁世强,李鑫,欧阳德来,周璇,钟明君. 基于应变补偿和BP神经网络的BT25钛合金本构关系研究. 塑性工程学报. 2020(12): 183-190 .
    10. 赖曲芳,付鹏,杜兆新. 锻态Ti6Al4V合金的高温变形和热处理行为. 金属热处理. 2019(04): 52-58 .
    11. 李鹏飞,邓持清,林新博,齐亮,姚幼甫,徐高磊. 上引连铸TU1热变形行为研究. 有色金属科学与工程. 2019(03): 69-74 . 本站查看
    12. 李华灿,李群芳,周治廷. 关于假设检验的两类错误. 东西南北. 2019(19): 215 .
    13. 刘欣,李强锋,汪志刚,张迎晖,谢健明,刘蔚宁. 低合金微碳钢的热变形行为及本构方程. 有色金属科学与工程. 2018(04): 53-59 . 本站查看
    14. 邓同生,李尚,卢娇,刘鑫,康丽. 稀土元素对钛合金蠕变性能影响规律综述. 有色金属科学与工程. 2018(06): 94-98 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (86) PDF downloads (2) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return