Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHAO Hong-jin, ZENG Wen-feng, KONG Jun, HE Fu-ping, ZHANG Ying-hui. Multi-level homogenization technology of 7055 aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 49-53. DOI: 10.13264/j.cnki.ysjskx.2013.03.010
Citation: ZHAO Hong-jin, ZENG Wen-feng, KONG Jun, HE Fu-ping, ZHANG Ying-hui. Multi-level homogenization technology of 7055 aluminum alloy[J]. Nonferrous Metals Science and Engineering, 2013, 4(3): 49-53. DOI: 10.13264/j.cnki.ysjskx.2013.03.010

Multi-level homogenization technology of 7055 aluminum alloy

More Information
  • Received Date: April 22, 2013
  • Published Date: June 29, 2013
  • The effects of multi-stage homogenization on the microstructures and ultimate mechanical properties of aluminum alloy 7055 were studied by optical microscopy, scanning electron microscopy, EDS and tensile test using intermediate frequency furnace smelting of aluminum alloy 7055. The results show that aluminum alloy 7055 ingots with no multi-stage homogenization treatment exists serious dendritic segregation. After 30 h single stage homogenization treatment at 470 ℃, the non-equilibrium phase on the grain boundaries decreases by forming discontinuous distribution and composition segregation improvement. The homogenization improves and the number of non-equilibrium phase increases with additional intermediate insulation at 410 ℃ for 4 h. The grain boundary shape is more regular. The third stage homogenization treatment, which is composed of isothermal heating at 250 ℃ for 4 h, then heated to 410 ℃ for 4 h and 470 ℃ for 30 h, greatly eliminates the non-equilibrium solidified eutectic on the grain boundaries. The mechanical properties are the best after aging.
  • [1]
    李岩, 闫洪, 陈小会. Al3Ti/7075铝基复合材料固溶处理工艺研究[J].热加工工艺, 2011, 40(14):139-142. http://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201114044.htm
    [2]
    卡默C.铝手册[M].卢惠民, 译.北京:化学工业出版社, 2008: 145-147.
    [3]
    李学朝.铝合金材料组织与金相图谱[M].北京:冶金工业出版社, 2010: 322-327.
    [4]
    Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Materialia, 2004, 52(15): 4503-4516. doi: 10.1016/j.actamat.2004.06.025
    [5]
    周鸿章, 李念奎.铝-21世纪基础研究与技术发展研讨会论文集:第一分册[C]//长沙:中南大学出版社, 2002:56.
    [6]
    VasudevanA K, DohertyR D. Aluminum alloys contemporary research and application[C]//Boston: Academic Press Inc, 1989:27.
    [7]
    耶拉金BИ.国外近代变形铝合金专集[M].北京:冶金工业出版社, 1984:112.
    [8]
    Park J K, Ardell A J.Effect of retrogession and reading treatments on the microstructure of Al-7075-T7651[J].Metallurgical Transactions A, 1984, 15:1531-1183. doi: 10.1007/BF02657792
    [9]
    Delasi R, Adler P N.Calorimetric studies of 7000serise aluminum alloys:I.Matrix precipitate characterization of 7075[J].Materrials Science Forum, 1996, 217:1255-1262. https://www.researchgate.net/publication/225163713_Calorimetric_studies_of_7000_series_aluminum_alloys_I_Matrix_precipitate_characterization_of_7075
    [10]
    Hornbogen E.Formation of nmsize dispersoids from supersaturated solutions of aluminum[J]. Materials Science Forum, 2000, 331:879-888.
    [11]
    Waterloo G, Hansen V, G Jionnes J, et al.Effect of predeformation and presaging at room temperature in AlZnMg (Cu, Zr) alloys[J].Materials Science and Engineering A, 2001, 303:226-233. doi: 10.1016/S0921-5093(00)01883-9
    [12]
    刘克威.7075铝合金热加工性能的实验与理论分析研究[D].重庆:重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010215779.htm
    [13]
    刘江卫, 陈康华, 刘允中.强化固溶对7075铝合金组织与性能的影响[J].金属热处理, 2000(9):16-17. http://www.cnki.com.cn/Article/CJFDTOTAL-JSRC200009007.htm
    [14]
    朱伟, 彭大暑, 张辉, 等. 7075铝合金厚板淬火残余应力消除工艺的研究[J].湘潭大学:自然科学学报, 2002, 24(1):75-78. http://www.cnki.com.cn/Article/CJFDTOTAL-LJGO200202004.htm
    [15]
    陆政, 杨守杰, 姜海峰, 等.一种新型超高强铝合金的均匀化工艺研究[J].航空材料学报, 2001, 21(2):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-HKCB200102003.htm
  • Related Articles

    [1]QI Zhaoming, XU Huaben, LE Shuncong, HUANG Hui, GUO Chengjun, XIAO Xiangpeng, YANG Bin. Effect of rare earth lanthanum on microstructure and properties of Cu-15Ni-8Sn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 569-579. DOI: 10.13264/j.cnki.ysjskx.2023.04.016
    [2]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [3]ZHAO Haibin, GAO Zan, LI Fusong, DONG Panpan, DAI Shiliang, FANG Huawei. Influence of thermal deformation on deformation behavior of high-temperature flow of Al-Sc-Zr alloy for automobiles and establishment of constitutive equations[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 41-48. DOI: 10.13264/j.cnki.ysjskx.2022.05.006
    [4]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [5]CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011
    [6]YUAN Changwang, HUANG Jiajin, LI Shengci, BIAN Xianzhi, LIU Shicun. Influence of die and temperature on microstructure and properties of 1 500 MPa thermoforming steel[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 37-43. DOI: 10.13264/j.cnki.ysjskx.2020.04.006
    [7]SONG Weiyuan, LIN Gaoyong, LI Qi. Influence of conditioning time before artificial aging on the microstructure and properties of 7055 aluminium alloy extruded tube[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 37-42. DOI: 10.13264/j.cnki.ysjskx.2018.05.007
    [8]LI Hongwei, CAI Xina, LIU Xin, LUO Diqiang, WANG Zhigang, ZHANG Qing, CHENG Ming, LAI Chaobin, TA Na. Effects of Y-based rear earth (RE) on microstructure and properties of 51CrV4 spring steel[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 18-22. DOI: 10.13264/j.cnki.ysjskx.2017.06.004
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]PENG Lijun, XIE Haofeng, YIN Xiangqian, YANG Zhen, MI Xujun. Effects of homogenization treatment on the microstructure of Cu-Cr-Zr alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 68-73. DOI: 10.13264/j.cnki.ysjskx.2014.05.012
  • Cited by

    Periodical cited type(4)

    1. 谢佳琪,张晗,朱志明. 旋转摩擦焊热力耦合行为及数值模拟研究进展. 清华大学学报(自然科学版). 2024(12): 2068-2083 .
    2. 陈志强,林银河,蒲春雷,田野,尹国亮,赵贵州. 热处理对典型低合金钢棒材力学性能影响的机理. 有色金属科学与工程. 2021(04): 51-57 . 本站查看
    3. 周朗牙,王日初,王小锋,蔡志勇,董翠鸽. SiCp/2014Al复合材料的热变形行为及本构模型. 有色金属科学与工程. 2021(04): 66-74 . 本站查看
    4. 李鹏飞,邓持清,林新博,齐亮,姚幼甫,徐高磊. 上引连铸TU1热变形行为研究. 有色金属科学与工程. 2019(03): 69-74 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (60) PDF downloads (6) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return