Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009
Citation: ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009

On the hot deformation behavior and constitutive model of SiCp/2014Al composites

More Information
  • Received Date: March 18, 2021
  • Published Date: August 30, 2021
  • The hot deformation behavior of silicon carbide particles reinforced aluminum matrix composite (SiCp/Al) was investigated by isothermal compression testing at temperatures of 350 ℃, 400 ℃, 450 ℃, and 450 ℃ as well as strain rates of 0.001~1 s-1 on a Gleeble-3180 simulator. Based on the true strain-true stress data of hot compression experiment, the modified Johnson-Cook constitutive model (M-JC) was constructed, considering the coupling effects of strain, strain rate and deformation temperature on flow stress, and the Artificial neuron network models (ANN) was established. The results show that the flow stress of SiCp/2014Al composite increases with the increase of stain rate and the decrease of temperature. Compared with the M-JC model, the ANN model has a lower root mean square error of 0.51 MPa, a lower average absolute error of 1.43%, and a higher correlation coefficient (0.999 7), which indicates that the ANN that it has higher prediction accuracy and reliability in the prediction of the hot deformation behavior of SiCp/2014Al composite.
  • [1]
    CHEN X, FU D, TENG J, et al. Hot deformation behavior and mechanism of hybrid aluminum-matrix composites reinforced with micro-SiC and nano-TiB2 [J]. Journal of Alloys and Compounds, 2018, 753: 566-575. doi: 10.1016/j.jallcom.2018.04.223
    [2]
    程明阳, 郝世明, 谢敬佩, 等. SiCp/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201702005.htm
    [3]
    XU W, JIN X, XIONG W, et al. Study on hot deformation behavior and workability of squeeze-cast 20 vol. % SiCw/6061Al composites using processing map[J]. Materials Characterization, 2018, 135: 154-166. doi: 10.1016/j.matchar.2017.11.026
    [4]
    TANG B, WANG H, JIN P, et al. Constitutive flow behavior and microstructural evolution of 17 vol. % SiCp/7055Al composite during compression at elevated temperature[J]. Journal of Materials Research and Technology, 2020, 9(3): 6386-6396. doi: 10.1016/j.jmrt.2020.04.010
    [5]
    ZHOU L, HUANG Z Y, WANG C Z, et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite[J]. Mechanics of Materials, 2016, 93: 32-42. doi: 10.1016/j.mechmat.2015.10.010
    [6]
    SEE K S, DEAN T A. The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs[J]. Journal of Materials Processing Technology, 1997, 69(1/2/3): 58-67. http://www.sciencedirect.com/science/article/pii/S0924013696000404
    [7]
    SRIVASTAVA V C, JINDAL V, UHLENWINKEL V, et al. Hot-deformation behaviour of spray-formed 2014 Al+SiCP metal matrix composites[J]. Materials Science and Engineering: A, 2008, 477(1/2): 86-95. http://www.sciencedirect.com/science/article/pii/S0921509307017418
    [8]
    刘欣, 李强锋, 汪志刚, 等. 低合金微碳钢的热变形行为及本构方程[J]. 有色金属科学与工程, 2018, 9(4): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201804009.htm
    [9]
    孙军伟, 张荣伟, 李升燕, 等. 5182铝合金热变形行为研究[J]. 有色金属科学与工程, 2018, 9(5): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201805008.htm
    [10]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
    [11]
    HE J, CHEN F, WANG B, et al. A modified Johnson-Cook model for 10%Cr steel at elevated temperatures and a wide range of strain rates[J]. Materials Science and Engineering: A, 2018, 715: 1-9. doi: 10.1016/j.msea.2017.10.037
    [12]
    NIU L, CAO M, LIANG Z, et al. A modified Johnson-Cook model considering strain softening of A356 alloy[J]. Materials Science and Engineering: A, 2020, 789. http://www.sciencedirect.com/science/article/pii/S0921509320306900
    [13]
    BOBBILI R, MADHU V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Materials Letters, 2018, 218: 103-105. doi: 10.1016/j.matlet.2018.01.163
    [14]
    SANI S A, EBRAHIMI G R, VAFAEENEZHAD H, et al. Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model[J]. Journal of Magnesium and Alloys, 2018, 6(2): 134-144. doi: 10.1016/j.jma.2018.05.002
    [15]
    宋亚虎, 王爱琴, 王震, 等. 双尺度SiCp/A356复合材料的热变形行为及本构模型[J]. 材料热处理学报, 2020, 41(12): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL202012016.htm
    [16]
    YAN J, PAN Q L, LI A D, et al. Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 638-647. doi: 10.1016/S1003-6326(17)60071-2
    [17]
    HESABI Z R, SANJARI M, SIMCHI A, et al. Effect of alumina nanoparticles on hot strength and deformation behaviour of Al-5 vol. % Al2O3 nanocomposite: experimental study and modelling[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(4): 2641-2645. doi: 10.1166/jnn.2010.1408
    [18]
    CHEN S, TENG J, LUO H, et al. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites[J]. Materials Science and Engineering: A, 2017, 697: 194-202. doi: 10.1016/j.msea.2017.05.016
    [19]
    TAN Y B, MA Y H, ZHAO F. Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy[J]. Journal of Alloys and Compounds, 2018, 741: 85-96. doi: 10.1016/j.jallcom.2017.12.265
    [20]
    RAJAMUTHAMILSELVAN M, RAMANATHAN S. Development of processing map for 7075 Al/20% SiCp composite[J]. Journal of Materials Engineering and Performance, 2011, 21(2): 191-196. doi: 10.1007%2Fs11665-011-9871-x
    [21]
    KOCKS U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76-85. doi: 10.1115/1.3443340
    [22]
    REN J, WANG R, FENG Y, et al. Hot deformation behavior and microstructural evolution of as-quenched 7055 Al alloy fabricated by powder hot extrusion[J]. Materials Characterization, 2019, 156: 109833. doi: 10.1016/j.matchar.2019.109833
    [23]
    WANG Y, ZHANG C, YANG Y, et al. The identification of improved Johnson-Cook constitutive model in a wide range of temperature and its application in predicting FLCs of Al-Mg-Li sheet[J]. Journal of Materials Research and Technology, 2020, 9(3): 3782-3795. doi: 10.1016/j.jmrt.2020.02.005
    [24]
    XIE Z, GUAN Y, LIN J, et al. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model[J]. Ultrasonics, 2019, 96: 1-9. doi: 10.1016/j.ultras.2019.03.017
    [25]
    BAGHERIPOOR M, BISADI H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process[J]. Applied Mathematical Modelling, 2013, 37(7): 4593-4607. doi: 10.1016/j.apm.2012.09.070
    [26]
    MAI R Y, LU H Z, BAI T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma[J]. Surgery, 2020, 168(4): 643-652. doi: 10.1016/j.surg.2020.06.031
    [27]
    HAGHDADI N, ZAREI-HANZAKI A, KHALESIAN A R, et al. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J]. Materials & Design, 2013, 49: 386-391. http://www.sciencedirect.com/science/article/pii/S0261306913000137
    [28]
    VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J]. Mechanics of Materials, 2005, 37(2): 355-378. http://www.sciencedirect.com/science/article/pii/S0167663604000894
    [29]
    LI P W, LI H Z, HUANG L, et al. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1677-1688. doi: 10.1016/S1003-6326(17)60190-0

Catalog

    Article Metrics

    Article views (174) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return