Citation: | ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009 |
[1] |
CHEN X, FU D, TENG J, et al. Hot deformation behavior and mechanism of hybrid aluminum-matrix composites reinforced with micro-SiC and nano-TiB2 [J]. Journal of Alloys and Compounds, 2018, 753: 566-575. doi: 10.1016/j.jallcom.2018.04.223
|
[2] |
程明阳, 郝世明, 谢敬佩, 等. SiCp/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201702005.htm
|
[3] |
XU W, JIN X, XIONG W, et al. Study on hot deformation behavior and workability of squeeze-cast 20 vol. % SiCw/6061Al composites using processing map[J]. Materials Characterization, 2018, 135: 154-166. doi: 10.1016/j.matchar.2017.11.026
|
[4] |
TANG B, WANG H, JIN P, et al. Constitutive flow behavior and microstructural evolution of 17 vol. % SiCp/7055Al composite during compression at elevated temperature[J]. Journal of Materials Research and Technology, 2020, 9(3): 6386-6396. doi: 10.1016/j.jmrt.2020.04.010
|
[5] |
ZHOU L, HUANG Z Y, WANG C Z, et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite[J]. Mechanics of Materials, 2016, 93: 32-42. doi: 10.1016/j.mechmat.2015.10.010
|
[6] |
SEE K S, DEAN T A. The effects of the disposition of SiC particles on the forgeability and mechanical properties of co-sprayed aluminium-based MMCs[J]. Journal of Materials Processing Technology, 1997, 69(1/2/3): 58-67. http://www.sciencedirect.com/science/article/pii/S0924013696000404
|
[7] |
SRIVASTAVA V C, JINDAL V, UHLENWINKEL V, et al. Hot-deformation behaviour of spray-formed 2014 Al+SiCP metal matrix composites[J]. Materials Science and Engineering: A, 2008, 477(1/2): 86-95. http://www.sciencedirect.com/science/article/pii/S0921509307017418
|
[8] |
刘欣, 李强锋, 汪志刚, 等. 低合金微碳钢的热变形行为及本构方程[J]. 有色金属科学与工程, 2018, 9(4): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201804009.htm
|
[9] |
孙军伟, 张荣伟, 李升燕, 等. 5182铝合金热变形行为研究[J]. 有色金属科学与工程, 2018, 9(5): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201805008.htm
|
[10] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
|
[11] |
HE J, CHEN F, WANG B, et al. A modified Johnson-Cook model for 10%Cr steel at elevated temperatures and a wide range of strain rates[J]. Materials Science and Engineering: A, 2018, 715: 1-9. doi: 10.1016/j.msea.2017.10.037
|
[12] |
NIU L, CAO M, LIANG Z, et al. A modified Johnson-Cook model considering strain softening of A356 alloy[J]. Materials Science and Engineering: A, 2020, 789. http://www.sciencedirect.com/science/article/pii/S0921509320306900
|
[13] |
BOBBILI R, MADHU V. A modified Johnson-Cook model for FeCoNiCr high entropy alloy over a wide range of strain rates[J]. Materials Letters, 2018, 218: 103-105. doi: 10.1016/j.matlet.2018.01.163
|
[14] |
SANI S A, EBRAHIMI G R, VAFAEENEZHAD H, et al. Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model[J]. Journal of Magnesium and Alloys, 2018, 6(2): 134-144. doi: 10.1016/j.jma.2018.05.002
|
[15] |
宋亚虎, 王爱琴, 王震, 等. 双尺度SiCp/A356复合材料的热变形行为及本构模型[J]. 材料热处理学报, 2020, 41(12): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL202012016.htm
|
[16] |
YAN J, PAN Q L, LI A D, et al. Flow behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 638-647. doi: 10.1016/S1003-6326(17)60071-2
|
[17] |
HESABI Z R, SANJARI M, SIMCHI A, et al. Effect of alumina nanoparticles on hot strength and deformation behaviour of Al-5 vol. % Al2O3 nanocomposite: experimental study and modelling[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(4): 2641-2645. doi: 10.1166/jnn.2010.1408
|
[18] |
CHEN S, TENG J, LUO H, et al. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites[J]. Materials Science and Engineering: A, 2017, 697: 194-202. doi: 10.1016/j.msea.2017.05.016
|
[19] |
TAN Y B, MA Y H, ZHAO F. Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy[J]. Journal of Alloys and Compounds, 2018, 741: 85-96. doi: 10.1016/j.jallcom.2017.12.265
|
[20] |
RAJAMUTHAMILSELVAN M, RAMANATHAN S. Development of processing map for 7075 Al/20% SiCp composite[J]. Journal of Materials Engineering and Performance, 2011, 21(2): 191-196. doi: 10.1007%2Fs11665-011-9871-x
|
[21] |
KOCKS U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology, 1976, 98(1): 76-85. doi: 10.1115/1.3443340
|
[22] |
REN J, WANG R, FENG Y, et al. Hot deformation behavior and microstructural evolution of as-quenched 7055 Al alloy fabricated by powder hot extrusion[J]. Materials Characterization, 2019, 156: 109833. doi: 10.1016/j.matchar.2019.109833
|
[23] |
WANG Y, ZHANG C, YANG Y, et al. The identification of improved Johnson-Cook constitutive model in a wide range of temperature and its application in predicting FLCs of Al-Mg-Li sheet[J]. Journal of Materials Research and Technology, 2020, 9(3): 3782-3795. doi: 10.1016/j.jmrt.2020.02.005
|
[24] |
XIE Z, GUAN Y, LIN J, et al. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model[J]. Ultrasonics, 2019, 96: 1-9. doi: 10.1016/j.ultras.2019.03.017
|
[25] |
BAGHERIPOOR M, BISADI H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process[J]. Applied Mathematical Modelling, 2013, 37(7): 4593-4607. doi: 10.1016/j.apm.2012.09.070
|
[26] |
MAI R Y, LU H Z, BAI T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma[J]. Surgery, 2020, 168(4): 643-652. doi: 10.1016/j.surg.2020.06.031
|
[27] |
HAGHDADI N, ZAREI-HANZAKI A, KHALESIAN A R, et al. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J]. Materials & Design, 2013, 49: 386-391. http://www.sciencedirect.com/science/article/pii/S0261306913000137
|
[28] |
VOYIADJIS G Z, ABED F H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency[J]. Mechanics of Materials, 2005, 37(2): 355-378. http://www.sciencedirect.com/science/article/pii/S0167663604000894
|
[29] |
LI P W, LI H Z, HUANG L, et al. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1677-1688. doi: 10.1016/S1003-6326(17)60190-0
|