Citation: | LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003 |
[1] |
SONG C, ZHAO B, CHEN S, et al. Nickel-assisted one-pot preparation of graphenic carbon matrices embedded with silicon nanoparticles as anode materials for lithium ion batteries[J]. Carbon, 2021, 179(3): 277-274.
|
[2] |
黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
|
[3] |
陈军, 梅文捷, 曾敏, 等. 羧基取代镍酞菁配合物的合成及其电化学性能研究[J]. 有色金属科学与工程, 2015, 6(5): 45-51. doi: 10.13264/j.cnki.ysjskx.2015.05.009
|
[4] |
ZHU S, ZHOU J, GUAN Y, et al. Hierarchical graphene-scaffolded silicon/Graphite composites as high performance anodes for lithium-ion batteries[J]. Small, 2018, 14: 1802457. doi: 10.1002/smll.201802457
|
[5] |
LIU S, XU W, DING C, et al. Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon[J]. Applied Surface Science, 2019, 494: 94-100. doi: 10.1016/j.apsusc.2019.07.193
|
[6] |
陈煜, 丁能文, 冯娟, 等. 多孔硅/无定形碳负极材料的制备及性能研究[J]. 电源技术, 2020(6): 804-807. doi: 10.3969/j.issn.1002-087X.2020.06.003
|
[7] |
WANG W, GU L, QIAN H, et al. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307: 410-415. doi: 10.1016/j.jpowsour.2016.01.010
|
[8] |
XIANG B, AN W L, FU J J, et al. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode[J]. Rare Metals, 2020, 40(1): 1-10.
|
[9] |
陈煜, 彭辉, 陈丽芳, 等. 三维孔道结构硅/碳负极材料的制备及其电化学性能研究[J]. 电池工业, 2018, 122(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DCGY201801008.htm
|
[10] |
ZHOU X, LIU Y, DU C, et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Power Sources, 2018, 381(31): 156-163.
|
[11] |
FAN Z, ZHENG S, HE S, et al. Preparation of micron Si@Canodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diamond and Related Materials, 2020, 107: 107898. doi: 10.1016/j.diamond.2020.107898
|
[12] |
赵超男, 张文齐, 杨建铖, 等. 凹凸棒制备Si@C复合材料及其用于锂离子电池负极材料的电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 52-58. doi: 10.13264/j.cnki.ysjskx.2020.03.007
|
[13] |
AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1-11.
|
[14] |
TAN T, LEE P, ZETTSU N, et al. Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer[J]. Journal of Power Sources, 2020, 453: 227874.
|
[15] |
WAN W, MAI Y, GUO D, et al. A novel sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries[J]. Synthetic Metals, 2021, 274(1): 116717.
|
[16] |
DING N, CHEN Y, LI R, et al. Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries[J]. Electrochimica Acta, 2020, 367: 137491.
|
[17] |
钟盛文, 黎明旭, 张骞, 等. 富锂锰基正极材料的高温储存性能研究[J]. 有色金属科学与工程, 2013, 4(3): 45-48. doi: 10.13264/j.cnki.ysjskx.2013.03.002
|
[18] |
WU Z Y, WU C Y, DUH J G. Facile synthesis of boron-doped graphene-silicon conductive network composite from recycling silicon for lithium-ion batteries anodes materials[J]. Materials Letters, 2021(8): 129875.
|
[19] |
WANG Z Y, LU Z X, GUO W, et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries[J]. Adv Mater, 2021, 33: 2006702.
|
[20] |
PING N, LE Z, CHEN G, et al. Graphene caging silicon particles for high-performance lithium-ion batteries[J]. Small, 2018, 14(25): 1800635.
|
[21] |
YANG M M, JIN L W, HE M Y, et al. SiOx@C composites obtained by facile synthesis as anodes for lithium-and potassium-ion batteries with excellent electrochemical performanc e-sciencedirect[J]. Applied Surface Science, 2021, 542: 148712.
|
[22] |
HUANG Y, LUO J, PENG J, et al. Porous silicon-graphene-carbon composite as high performance anode material for lithium ion batteries[J]. The Journal of Energy Storage, 2020, 27: 101075.
|
[23] |
TANG H, ZHANG J, ZHANG Y J, et al. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application[J]. Journal of Power Sources, 2015, 286(15): 431-437.
|
[24] |
YU J, ZHANG C R, WU W D, et al. Nodes-connected silicon-carbon nanofibrous hybrids anodes for lithium-ion batteries[J]. Applied Surface Science, 2021, 548: 148944.
|
[25] |
JIAO L S, LIU J Y, LI H Y, et al. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes[J]. Journal of Power Sources, 2016, 315: 9-15.
|
[26] |
JIANG Z, LI C, HAO S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochim Acta, 2014, 115(3): 393-398.
|
[1] | FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010 |
[2] | MAO Pengyan, ZHAO Hui, LI Hongda. Effect of Al content on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 867-876. DOI: 10.13264/j.cnki.ysjskx.2024.06.010 |
[3] | DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017 |
[4] | YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009 |
[5] | QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014 |
[6] | CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011 |
[7] | LUO Haiyun, KUANG Quanbo, WANG Richu. Microstructure and mechanical properties of spray deposited Al-Mg-Li Alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 66-71. DOI: 10.13264/j.cnki.ysjskx.2019.04.011 |
[8] | QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007 |
[9] | LIU Zhenlin, LI Yongliang, ZHU Maohua, LI Maowang, YANG Zhanbing, WANG Fuming, SUN Yuhan. The influence of Al content on the mechanical of energy-storing lead-base dashpot[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 37-41. DOI: 10.13264/j.cnki.ysjskx.2015.02.007 |
[10] | HUANG Lihua, ZHANG Tao, ZHANG Xiaobo. Effects of heat treatment and extrusion on the microstructures and mechanical properties of WE53 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 67-70. DOI: 10.13264/j.cnki.ysjskx.2014.06.011 |