Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003
Citation: LI Rui, CHEN Yu, DING Nengwen, LI Zhifeng, LI Xiaocheng. Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 16-22. DOI: 10.13264/j.cnki.ysjskx.2022.05.003

Preparation and electrochemical performance of Lithium-ion battery negative electrode material PSi@GO

More Information
  • Received Date: August 27, 2021
  • Revised Date: December 12, 2021
  • Available Online: November 07, 2022
  • The high energy density of silicon makes it one of the preferred materials for the negative electrode of lithium-ion batteries. However, the low conductivity and the accompanying large volume changes during charging and discharging process led to the rapid decay of the capacity during the cycle, which hindered its commercialization. In this paper, a commercialized aluminum-silicon alloy is used as the silicon source, and graphene oxide is coated on the surface by freeze-drying method to prepare micron-scale PSi@GO composite materials. The rich pores inside the porous silicon core layer of the composite material provide sufficient space to accommodate the volume changes of silicon, and the graphene oxide in the outer composite layer can accelerate the transmission of ions and electrons and buffer the volume change of silicon again, thereby effectively improving the cycle stability and multiplier performance of the silicon negative electrode. The research results show that when the PSi@GO-2 (with a mass ratio of 10∶5) composite electrode material has a current density of 500 mAh/g, the specific capacity is still 1 290.60 mAh/g after 100 cycles. In addition, it still has a high specific capacity of 979.78 mAh/g when the current density is 4 A/g. The PSi@GO composite material shows excellent multiplier performance and has good application prospects.
  • [1]
    SONG C, ZHAO B, CHEN S, et al. Nickel-assisted one-pot preparation of graphenic carbon matrices embedded with silicon nanoparticles as anode materials for lithium ion batteries[J]. Carbon, 2021, 179(3): 277-274.
    [2]
    黄庆研, 梁雅莉, 王俊荣, 等. 烧成温度对溶胶凝胶法合成LiNi0.8Co0.1Mn0.1O2材料性能的影响[J]. 有色金属科学与工程, 2020, 11(6): 64-70. doi: 10.13264/j.cnki.ysjskx.2020.06.009
    [3]
    陈军, 梅文捷, 曾敏, 等. 羧基取代镍酞菁配合物的合成及其电化学性能研究[J]. 有色金属科学与工程, 2015, 6(5): 45-51. doi: 10.13264/j.cnki.ysjskx.2015.05.009
    [4]
    ZHU S, ZHOU J, GUAN Y, et al. Hierarchical graphene-scaffolded silicon/Graphite composites as high performance anodes for lithium-ion batteries[J]. Small, 2018, 14: 1802457. doi: 10.1002/smll.201802457
    [5]
    LIU S, XU W, DING C, et al. Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon[J]. Applied Surface Science, 2019, 494: 94-100. doi: 10.1016/j.apsusc.2019.07.193
    [6]
    陈煜, 丁能文, 冯娟, 等. 多孔硅/无定形碳负极材料的制备及性能研究[J]. 电源技术, 2020(6): 804-807. doi: 10.3969/j.issn.1002-087X.2020.06.003
    [7]
    WANG W, GU L, QIAN H, et al. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307: 410-415. doi: 10.1016/j.jpowsour.2016.01.010
    [8]
    XIANG B, AN W L, FU J J, et al. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode[J]. Rare Metals, 2020, 40(1): 1-10.
    [9]
    陈煜, 彭辉, 陈丽芳, 等. 三维孔道结构硅/碳负极材料的制备及其电化学性能研究[J]. 电池工业, 2018, 122(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DCGY201801008.htm
    [10]
    ZHOU X, LIU Y, DU C, et al. Polyaniline-encapsulated silicon on three-dimensional carbon nanotubes foam with enhanced electrochemical performance for lithium-ion batteries[J]. Journal of Power Sources, 2018, 381(31): 156-163.
    [11]
    FAN Z, ZHENG S, HE S, et al. Preparation of micron Si@Canodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diamond and Related Materials, 2020, 107: 107898. doi: 10.1016/j.diamond.2020.107898
    [12]
    赵超男, 张文齐, 杨建铖, 等. 凹凸棒制备Si@C复合材料及其用于锂离子电池负极材料的电化学性能[J]. 有色金属科学与工程, 2020, 11(3): 52-58. doi: 10.13264/j.cnki.ysjskx.2020.03.007
    [13]
    AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1-11.
    [14]
    TAN T, LEE P, ZETTSU N, et al. Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer[J]. Journal of Power Sources, 2020, 453: 227874.
    [15]
    WAN W, MAI Y, GUO D, et al. A novel sol-gel process to encapsulate micron silicon with a uniformly Ni-doped graphite carbon layer by coupling for use in lithium ion batteries[J]. Synthetic Metals, 2021, 274(1): 116717.
    [16]
    DING N, CHEN Y, LI R, et al. Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries[J]. Electrochimica Acta, 2020, 367: 137491.
    [17]
    钟盛文, 黎明旭, 张骞, 等. 富锂锰基正极材料的高温储存性能研究[J]. 有色金属科学与工程, 2013, 4(3): 45-48. doi: 10.13264/j.cnki.ysjskx.2013.03.002
    [18]
    WU Z Y, WU C Y, DUH J G. Facile synthesis of boron-doped graphene-silicon conductive network composite from recycling silicon for lithium-ion batteries anodes materials[J]. Materials Letters, 2021(8): 129875.
    [19]
    WANG Z Y, LU Z X, GUO W, et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries[J]. Adv Mater, 2021, 33: 2006702.
    [20]
    PING N, LE Z, CHEN G, et al. Graphene caging silicon particles for high-performance lithium-ion batteries[J]. Small, 2018, 14(25): 1800635.
    [21]
    YANG M M, JIN L W, HE M Y, et al. SiOx@C composites obtained by facile synthesis as anodes for lithium-and potassium-ion batteries with excellent electrochemical performanc e-sciencedirect[J]. Applied Surface Science, 2021, 542: 148712.
    [22]
    HUANG Y, LUO J, PENG J, et al. Porous silicon-graphene-carbon composite as high performance anode material for lithium ion batteries[J]. The Journal of Energy Storage, 2020, 27: 101075.
    [23]
    TANG H, ZHANG J, ZHANG Y J, et al. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application[J]. Journal of Power Sources, 2015, 286(15): 431-437.
    [24]
    YU J, ZHANG C R, WU W D, et al. Nodes-connected silicon-carbon nanofibrous hybrids anodes for lithium-ion batteries[J]. Applied Surface Science, 2021, 548: 148944.
    [25]
    JIAO L S, LIU J Y, LI H Y, et al. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes[J]. Journal of Power Sources, 2016, 315: 9-15.
    [26]
    JIANG Z, LI C, HAO S, et al. An easy way for preparing high performance porous silicon powder by acid etching Al-Si alloy powder for lithium ion battery[J]. Electrochim Acta, 2014, 115(3): 393-398.
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]MAO Pengyan, ZHAO Hui, LI Hongda. Effect of Al content on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 867-876. DOI: 10.13264/j.cnki.ysjskx.2024.06.010
    [3]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [4]YANG Yuping, SU Ruiming, MA Siyi, NIE Sainan, LI Guanglong. Effects of Ni on structure and mechanical properties of Al-Cu-Mn alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 67-73. DOI: 10.13264/j.cnki.ysjskx.2023.01.009
    [5]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [6]CHEN Weiqing, XU Guanming, CUI Ziyi, YU Jiatian, ZHANG Xuehui, WANG Chunming. Microstructure and mechanical properties of 7B85 alloy ultrasonic rolling treated 7B85 alloy[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 80-87. DOI: 10.13264/j.cnki.ysjskx.2021.06.011
    [7]LUO Haiyun, KUANG Quanbo, WANG Richu. Microstructure and mechanical properties of spray deposited Al-Mg-Li Alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 66-71. DOI: 10.13264/j.cnki.ysjskx.2019.04.011
    [8]QI Haiquan, QIN Xiangzhi, SUN Yanhuan, LYU Yuan, WU Shunyi, RUAN Rencheng. Mechanical properties of Q235/5083 dissimilar material self-impact riveting head[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 45-49. DOI: 10.13264/j.cnki.ysjskx.2018.06.007
    [9]LIU Zhenlin, LI Yongliang, ZHU Maohua, LI Maowang, YANG Zhanbing, WANG Fuming, SUN Yuhan. The influence of Al content on the mechanical of energy-storing lead-base dashpot[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 37-41. DOI: 10.13264/j.cnki.ysjskx.2015.02.007
    [10]HUANG Lihua, ZHANG Tao, ZHANG Xiaobo. Effects of heat treatment and extrusion on the microstructures and mechanical properties of WE53 magnesium alloy[J]. Nonferrous Metals Science and Engineering, 2014, 5(6): 67-70. DOI: 10.13264/j.cnki.ysjskx.2014.06.011

Catalog

    Article Metrics

    Article views (198) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return