Citation: | SHAO Yanbin, CHEN Shangbo, WANG Qinghe, LIU Peixun, YU Songtao, LI Jia. Chain evolution and risk analysis of enderground tungsten mine disasters induced by rainstorm and flood[J]. Nonferrous Metals Science and Engineering, 2024, 15(5): 750-757. DOI: 10.13264/j.cnki.ysjskx.2024.05.015 |
Intense rainfall and flooding frequently cause a range of calamities in mines, resulting in substantial losses and impacts. By analyzing the disaster chain evolution and risk characteristics of the underground tungsten mine affected by rainstorms and floods, disaster events were identified and the disaster chain evolution model was established. Based on the complex network theory, a network model consisting of 47 nodes and 176 edge hazards was constructed, and then parameters such as node degree value, node subnet number and edge vulnerability were analyzed to identify the key points and edges of the disaster network. The results show that the flooded wells, factory destruction, industrial site inundation, industrial site burial, and industrial site damage are 0.328 3, 0.115 4, 0.109 9, 0.084 5 and 0.084 5, respectively. These disaster events are critical nodes in the network of a specific underground tungsten mine disaster induced by heavy rainfall and floods. Furthermore, the edge vulnerability for surface water to surface runoff, surface runoff to debris flow, the sudden influx of water into the mine to flooded wells, surface runoff to collapse landslide, and surface runoff to flash floods are 373.715 1, 354.782 4, 346.153 6, 336.122 2 and 335.838 5, respectively. The above edges are the critical edges in the network of rain-flood-induced disasters in the specific underground tungsten mine. The research findings offer a scientific basis for the prevention and disaster risk reduction of underground tungsten mine disasters induced by heavy rainfall and floods.
[1] |
文传甲.广义灾害、灾害链及其防治探讨[J].灾害学, 2000, 15(4):13-18.
|
[2] |
韩金良,吴树仁,汪华斌.地质灾害链[J].地学前缘, 2007, 14(6):11-23.
|
[3] |
宁嘉辰,吴吉东,唐茹玫,等.多灾种风险评估方法述评——基于5份国际权威报告的对比分析[J].地理科学进展, 2023, 42(1):197-208.
|
[4] |
吴书强,邵必林,边根庆,等.基于复杂网络的高校火灾灾害链分析及应急管理决策研究[J].灾害学,2022,37(2):156-161,166.
|
[5] |
刘永志,唐雯雯,张文婷,等.基于灾害链的洪涝灾害风险分析综述[J].水资源保护,2021,37(1):20-27.
|
[6] |
金菊良,宋占智,周玉良,等.水旱灾害风险评估方法体系及其实证研究[J].水利水电科技进展,2015,35(5):142-151.
|
[7] |
靳文波,杨继星,刘韶菲,等.特大城市暴雨灾害断链推演与应对方法研究[J].中国工程科学,2023,25(1):20-29.
|
[8] |
何书,胡萌,杨志华,等.基于模糊频率比与熵指数的滑坡易发性评价——以崇义县为例[J].有色金属科学与工程, 2022,13(4):80-90.
|
[9] |
綦昕瑶,高路.不同地形条件下的台风灾害链致灾分析—以“利奇马”台风为例[J].福建师范大学学报(自然科学版),2020,36(5):74-83.
|
[10] |
王鹏,杨柯,雷杰,等.泸定6.8级地震公路地质灾害链效应分析[J].灾害学,2023,38(2):121-126.
|
[11] |
郭付三,周春梅,杜娟.基于灾害链效应的小秦岭乱石沟矿山泥石流风险评价[J].安全与环境工程,2015,22(2):25-31.
|
[12] |
SANTOS M,SANTOS J A,FRAGOSO M.Atmospheric driving mechanisms of flash floods in Portugal[J]. International Journal of Climatology,2017,37(增刊1):671-680.
|
[13] |
巫辅宇,饶运章,石亮,等.强降雨条件下离子型稀土矿山边坡稳定性分析[J].有色金属科学与工程,2022,13(5):148-154.
|
[14] |
刘磊,施龙青,孙红华,等.矿山灾害链及其断链减灾模式分析[J].煤田地质与勘探,2013,41(5):40-44.
|
[15] |
周科平,刘福萍,胡建华,等.尾矿库溃坝灾害链及断链减灾控制技术研究[J].灾害学,2013,28(3):24-29.
|
[16] |
KAPPES M S, KEILER M, ELVERFELDT K, et al. Challenges of analyzing multi-hazard risk: a review[J].Natural Hazards, 2012,64(2):1925-1958.
|
[17] |
HELBING D. Globally networked risks and how to respond[J].Nature, 2013,497:51-59.
|
[18] |
GAO F, TAN X. Evolution model and risk analysis of urban haze disaster chain[J].Science and Technology Review, 2018,36(13):73-8.
|
[19] |
SERRE D,HEINZLEF C.Assessing and mapping urban resilience to floods with respect to cascading effects through critical infrastructure networks[J].International Journal of Disaster Risk Reduction,2018,30:235-243.
|
[20] |
朱伟,陈长坤,纪道溪,等.我国北方城市暴雨灾害演化过程及风险分析[J].灾害学, 2011,26(3):88-91.
|
[21] |
李璟汶, 蒋佩伶, 李启航, 等. 岩质排土场边坡形变区域的自动识别与评估[J]. 江西冶金, 2022, 42(4): 68-76.
|
[22] |
宋英华,张小莹,吕伟.城镇-森林交界域火灾灾害链网络模型构建及风险分析[J].中国安全生产科学技术,2020,16(5):122-128.
|
[23] |
李晓璐,于昕明,雷方舒,等.城市轨道交通系统灾害链网络模型构建与评价[J].中国安全科学学报,2018,28(6):179-184.
|
[24] |
李浩然,欧阳作林,姜军,等.城市轨道交通灾害链演化网络模型及其风险分析—以地铁水灾为例[J].铁道标准设计,2020,64(2):153-157.
|
[25] |
陈月娟.矿山地面沉降灾害链信息模型与地理信息聚合服务[D].太原:太原理工大学,2018:50-61.
|
[26] |
黄鑫,吴珍云,丁德建,等.基于信息量-逻辑回归模型的江西省婺源县地质灾害易发性评价[J]. 东华理工大学学报(自然科学版),2023,46(3):259-268.
|
[27] |
王成楠,宋勇,赵影,等.基于加权信息量法和逻辑回归信息量法的定南县地质灾害易发性评价[J]. 东华理工大学学报(自然科学版),2022,45(6):569-580.
|
[1] | WANG Zhongfeng, FENG Yusheng, HUANG Weiling. Analysis of the influence of different structural configurations on the mixing efficiency of the guide tube mixing tank[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 814-821. DOI: 10.13264/j.cnki.ysjskx.2024.06.004 |
[2] | WANG Fei, NIU Jiazhen, GUO Shengqi, WANG Junli, GUO Jing. Prediction study of desulfurization during the argon protective electroslag remelting process[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 487-496. DOI: 10.13264/j.cnki.ysjskx.2024.04.003 |
[3] | TANG Daowen, DONG Xiongwen, LI Junqi, CHEN Xiaohu, YAO Jinhua, SHEN Xiyuan, LEI Shangrong, SHEN Hongyu. Industrial experiment study on preparation of battery grade manganese sulfate by combined desulfurization of pyrolusite and rhodochrosite[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 454-459. DOI: 10.13264/j.cnki.ysjskx.2023.04.002 |
[4] | JIANG Zhengshuai, XIA Feilong, ZHANG Shanshan, ZHANG Qiang, ZHANG Min. Study on efficient desulfurization and desilication process of low-grade bauxite[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 26-34. DOI: 10.13264/j.cnki.ysjskx.2022.03.004 |
[5] | YANG Qian, JIN Huixin, YIN Qiannan, XIAO Yuandan, WANG Shangjiefu. Microwave roasting desulfurization pretreatment of high-sulfur bauxite and high-pressure dissolution performance of roasted ore[J]. Nonferrous Metals Science and Engineering, 2021, 12(5): 39-45. DOI: 10.13264/j.cnki.ysjskx.2021.05.005 |
[6] | OUYANG Kun, DOU Zhihe, ZHANG Ting'an, LIU Yan. The desulfurization process of lead and zinc mixed concentrate with oxygen[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 1-6. DOI: 10.13264/j.cnki.ysjskx.2020.02.001 |
[7] | TONG Zhifang, JIANG Xiyuan, CHEN Tao. Effect of Composition on Sulfur Partition Ratio between CaO-Al2O3-SiO2-TiO2-MgO-Na2O slags and HotIron[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 5-10. DOI: 10.13264/j.cnki.ysjskx.2016.01.002 |
[8] | YANG Zhiqiang, XIONG Liangfeng, FANG Lin, GAO Qian, TIAN Lipeng. Preparation of new filling cementing materials with sintering desulfurization ash[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 8-12. DOI: 10.13264/j.cnki.ysjskx.2015.01.002 |
[9] | YANG You-liang, SONG He-jun. Experimental Study on the Efficient Wet Scrubber about the Removal of the Phosphate Dust[J]. Nonferrous Metals Science and Engineering, 2011, 2(1): 92-95. |
[10] | HU Jian-guo, MAO Shi-yi. The Way to Raise Grinding Efficiency[J]. Nonferrous Metals Science and Engineering, 2002, 16(2): 11-12,21. |