Citation: | REN Kepiao, WANG Jingsong, LI Yan, SHE Xuefeng, XUE Qingguo, ZUO Haibin, WANG Guang. Transport and enrichment of thallium in metallurgical processes[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 311-321. DOI: 10.13264/j.cnki.ysjskx.2024.03.001 |
Thallium is a typical rare and dispersed element with much higher toxicity than Hg, Cd, Cu, Pb, As, etc. Although it is very low in the earth's crust, it is enriched by metallurgical processes, and the thallium content in metallurgical by-products is much higher than the crustal abundance. The main production sources of thallium in the world are the flue dust of zinc, lead and copper, so the non-ferrous metallurgy part of this paper takes zinc, lead and copper smelting processes as examples. In ferrous metallurgy, although there are fewer studies on thallium, this paper reviews the elemental content, related chemical reactions and enrichment trends of thallium in various processes of iron and steel metallurgy. This paper introduces the migration and enrichment of thallium in metallurgical processes, and provides relevant research support for thallium element opening and solid waste resource utilization, to achieve the goal of green metallurgy and to serve the national ecological civilization strategy.
[1] |
任可飘, 佘雪峰.固废处理与人类社会可持续发展[J]. 金属世界,2022(2):72-76.
|
[2] |
LI Y, FENG H X, WANG J S, et al. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry[J]. Journal of Cleaner Production,2022,367(9):132909.
|
[3] |
WANG J, ZHOU Y T, DONG X H, et al. Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy[J]. Chemosphere,2020,242:125172.
|
[4] |
戴华, 郑相宇, 卢开聪.铊污染的危害特性及防治[J].广东化工,2011,38(7):108-109.
|
[5] |
付向辉, 李立, 杨国超, 等.工业含铊废水处理研究现状与进展[J]. 稀有金属,2020,44(2):205-214.
|
[6] |
刘仕翔, 宁晖, 黄允豪, 等.铊在土壤环境中的行为及其生态毒理学研究进展[J].安全与环境工程,2022,29(3):146-154.
|
[7] |
周清平, 胡劲, 姚顺忠.铊的应用以及对人体的危害[J].有色金属加工,2009,38(1):10-12,5.
|
[8] |
段泓羽, 王长明. 关键金属铊的地球化学性质与成矿[J]. 岩石学报,2022,38(6):1771-1794.
|
[9] |
JOHN PETER A L, VIRARAGHAVAN T. Thallium: a review of public health and environmental concerns[J]. Environment International,2005,31(4):493-501.
|
[10] |
祖文川, 汪雨, 陈建钢, 等.环境领域铊元素的分析技术研究进展[J]. 分析试验室,2022,41(3):357-365.
|
[11] |
肖祈春, 肖国光, 余侃萍, 等.含铊废水污染及其治理技术[J] .金属材料与冶金工程,2015,43(1):54-56,60.
|
[12] |
RIYAZ R, PANDALAI S L, SCHWARTZ M, et al. A fatal case of thallium toxicity: challenges in management[J]. Journal of Medical Toxicology,2013,9(1):75-78.
|
[13] |
TYAGI R, RANA P, KHAN A R, et al. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy[J]. Journal of Applied Toxicology,2011,31(7):663-670.
|
[14] |
CHEAM V. Thallium contamination of water in Canada[J]. Water Quality Research Journal,2001,36(4):851-877.
|
[15] |
王春霖, 陈永亨, 张永波, 等.铊的环境地球化学研究进展[J].生态环境学报,2010,19(11):2749-2757.
|
[16] |
罗旭文. 粤北某钢铁工业区下游流域沉积物[D].广州:广州大学,2019.
|
[17] |
CHEN M Q, WU P X, YU L F, et al. FeOOH-loaded MnO2 nano-composite: an efficient emergency material for thallium pollution incident[J]. Journal of Environmental Management,2017,192(5):31-38.
|
[18] |
HUANG X X, LI N, WU Q H, et al. Fractional distribution of thallium in paddy soil and its bioavailability to rice[J]. Ecotoxicology and Environmental Safety,2018,148(2):311-317.
|
[19] |
RICKWOOD C J, KING M, HUNTSMAN-MAPILA P. Assessing the fate and toxicity of Thallium I and Thallium Ⅲ to three aquatic organisms[J]. Ecotoxicology and Environmental Safety,2015,115(5):300-308.
|
[20] |
BELZILE N, CHEN Y W. Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles[J]. Applied Geochemistry,2017,84(9):218-243.
|
[21] |
GALVÁN-ARZATE S, SANTAMARı́A A. Thallium toxicity[J]. Toxicology Letters,1998,99(1):1-13.
|
[22] |
QUEROL X, FERNÁNDEZ-TURIEL J, LÓPEZ-SOLER A. Trace elements in coal and their behaviour during combustion in a large power station[J]. Fuel,1995,74(3):331-343.
|
[23] |
Geological Survey U.S., Mineral commodity summaries 2022 [EB/OL],2022,171.
|
[24] |
DMOWSKI K, KOZAKIEWICZ A, KOZAKIEWICZ M. Bioindykacyjne poszukiwania talu na terenach poludniowej polski[J]. Kosmos,2002,51(2): 151-163.
|
[25] |
王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:锌冶金[J].有色金属科学与工程,2017,8(1):1-7.
|
[26] |
李若贵.我国铅锌冶炼工艺现状及发展[J].中国有色冶金,2010,39(6):13-20.
|
[27] |
龚傲. 锌冶炼高硫渣中组分赋存行为及硫磺包裹规律研究[D].赣州:江西理工大学,2021.
|
[28] |
刘志宏, 李鸿飞, 李启厚, 等.铊在有色冶炼过程中的行为、危害及防治[J].四川有色金属,2007(4):2-7,22.
|
[29] |
吴钧, 曾鹏, 冯祺, 等.铊对常规湿法炼锌系统的影响及开路方法[J].中国有色冶金,2021,50(6):34-38.
|
[30] |
王振岭.电炉炼锌[M].北京:冶金工业出版社,2001,13-17.
|
[31] |
华一新.有色冶金概论[M].3版.北京:冶金工业出版社,2014,147.
|
[32] |
CHEN Y H, WANG C L, LIU J, et al. Environmental exposure and flux of thallium by industrial activities utilizing thallium-bearing pyrite[J]. Science China Earth Sciences,2013,56(9):1502-1509.
|
[33] |
马强.有色冶炼烟气中铊盐的吸附和催化氧化研究[D].昆明:昆明理工大学,2021.
|
[34] |
郭天立, 程永强, 奚英洲.锌铅铜冶炼中铊的治理途径探索[J].中国有色冶金,2015,44(1):67-70.
|
[35] |
杨腾蛟, 孔金换, 陶杰, 等.湿法炼锌系统硒铊的分布走向研究[J].中国有色冶金,2019,48(4):29-32.
|
[36] |
李凯茂, 崔雅茹, 王尚杰, 等.铅火法冶炼及其废渣综合利用现状[J].中国有色冶金,2012,41(2):70-73.
|
[37] |
王成彦, 陈永强.中国铅锌冶金技术状况及发展趋势:铅冶金[J].有色金属科学与工程,2016,7(6):1-7.
|
[38] |
周令治.稀散金属冶金[M].北京:冶金工业出版社,1988,254-255.
|
[39] |
彭容秋.重金属冶金学[M].长沙:中南工业大学出版社,1991,150-192.
|
[40] |
《重有色金属冶炼设计手册》编辑部.重有色金属冶金设计手册(铅锌铋卷) [M].北京:冶金工业出版社,1996.186-189.
|
[41] |
程秦豫, 黄易勤, 陈小雁, 等.铊在铅锌矿选冶过程中的转移及环境影响风险[J].有色金属工程,2018,8(2):129-132.
|
[42] |
周令治, 陈少纯.稀散金属提取冶金[M].北京:冶金工业出版社,2008,231-233.
|
[43] |
李中臣, 王亲猛, 田庆华, 等.铜熔炼渣制备铁精矿研究[J].有色金属科学与工程,2022,13(4):1-9.
|
[44] |
熊果, 沈毅.钢铁企业铊污染的研究及防治对策[J].工业安全与环保,2015,41(6):30-32.
|
[45] |
缪新.钢铁企业铊污染及防治现状研究[J].中国金属通报,2022(3):13-15.
|
[46] |
伍思扬, 卢然, 王宁, 等.我国钢铁行业废水铊污染现状及防治对策[J].现代化工,2021,41(8):12-15.
|
[47] |
曹晓凡.我国工业铊污染产排节点与治理[J].有色金属(冶炼部分),2023(1):131-137.
|
[48] |
俞新宇, 彭军, 张芳, 等.高炉灰与转炉灰微波协同处理提取锌、铁有价组分[J].有色金属科学与工程,2022,13(4):10-19.
|
[49] |
李强, 乔捷娟, 赵烨, 等.污灌区土壤-棉花系统中铊的分布特征[J].生态环境学报,2009,18(2):502-506.
|
[50] |
刘敬勇, 常向阳, 涂湘林, 等.广东某硫酸废渣堆渣场周围土壤铊污染的地累积指数评价[J].土壤通报,2010,41(5):1231-1236.
|
[51] |
LIU J, LI N, ZHANG W L, et al. Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks[J]. Environmental Pollution,2019,248(5):906-915.
|
[52] |
RAN H Z, GUO Z H, YI L W, et al. Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China[J]. Journal of Hazardous Materials,2021,413(7):125382.
|
[53] |
王晨, 曾祥英, 于志强, 等.湘江衡阳段沉积物中铊等重金属的污染特征及其生态风险评估[J].生态毒理学报,2013,8(1):16-22.
|
[54] |
蓝郁, 梁荣昌, 赵学敏, 等.突发镉、铊环境污染事件及应急处置对贺江生态风险的影响[J].环境科学学报,2017,37(9):3602-3612.
|
[55] |
夏杰, 胡俊良, 李堃, 等.广西贺州莲塘镇周边地下水铊异常浅析[J].华南地质,2020,36(3):263-269.
|
[56] |
陈洁宜.黔西南地区土壤铊表生富集特征及机理研究[D].广州:广州大学,2020.
|
[57] |
刘福田, 王学求, 迟清华.中国西南“三江”流域区土壤铊空间分布及健康风险评估[J].中国环境科学,2021,41(4):1765-1777.
|
[58] |
生态环境部.钢铁工业水污染物排放标准修改单, GB/T 13456—2012[S]. 北京:中国环境科学出版社,2012.
|
[59] |
江西省市场监督管理局,江西省生态环境厅.工业废水铊污染物排放标准, DB 36/1149—2019[S].
|
[60] |
江苏省生态环境厅, 江苏省质量技术监督局. 钢铁工业废水中铊污染物排放标准, DB 32/3431—2018 [S].
|
[61] |
湖南省生态环境厅.工业废水铊污染物排放标准,DB 32/3431—2018[S].
|
[62] |
广东省质量技术监督局,工业废水铊污染物排放标准, DB 44/1989—2017[S].
|
[63] |
国家环境保护总局, 国家质量监督检验检疫总局,.地表水环境质量标准: GB 3838—2002[S]. 北京:中国环境科学出版社,2002
|
[64] |
国家质量监督检验检疫总局,中国国家标准化管理委员会.地下水质量标准:GB/T 14848—2017[S].北京:中国标准出版社,2017.
|
[65] |
国家市场监督管理总局,国家标准化管理委员会.生活饮用水卫生标准:GB 5749—2022[S].北京:中国标准出版社,2022.
|
1. |
侯宏英,贾彦鹏,李俊凯,兰建,陈方淑. 石墨烯生产废液中双球状碳酸锰的提取及其电化学储锂性能. 有色金属科学与工程. 2024(01): 8-14 .
![]() | |
2. |
刘力,杨天辉,周曦,孟冉浩. 氢化物对Mg_2Ni基合金储氢性能的影响. 有色金属科学与工程. 2023(06): 825-832 .
![]() | |
3. |
胡海燕,武源波,刘益峰,唐瑞仁,吴雄伟,肖遥. 基于铝氧键稳定的隧道型钠离子电池正极材料. 有色金属科学与工程. 2022(02): 59-66 .
![]() | |
4. |
张露,黄彬琪,王艳阳,龙腾威,刘嘉铭. 分级结构MoO_2/C微球作为高性能锂离子电池负极材料研究. 江西冶金. 2022(05): 31-35 .
![]() | |
5. |
文敏,徐子其,张克,李轩,胡君辉,罗虹,尹艳红. 氧化钨/碳纳米管膜复合负极的制备及其储锂性能. 有色金属科学与工程. 2021(04): 58-65 .
![]() | |
6. |
李基铭,覃慧,刘嘉铭. 水热法制备V_2O_5作为高性能锂离子电池正极材料. 有色金属(冶炼部分). 2021(11): 79-84 .
![]() |