Citation: | JI Langyong, FAN Haihan, WENG Lingyi, SU Zhongfang, CUI Jiaxin, E Dianyu. Numerical study on the thermochemical behavior evolution during dynamic batch weight conversion in a blast furnace[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 764-772. DOI: 10.13264/j.cnki.ysjskx.2023.06.003 |
[1] |
KURUNOV I F. The blast-furnace process is there any alternative?[J]. Metallurgist, 2012, 56(3): 241-246.
|
[2] |
杨天钧,张建良,刘征建,等.低碳炼铁势在必行[J].炼铁, 2021, 40(4): 1-11.
|
[3] |
XU B H, YU A B. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science,1997, 52(16): 2785-2809.
|
[4] |
DONG X F, YU A B, YAGI J I, et al. Modelling of multiphase flow in a blast furnace: recent developments and future work[J]. ISIJ International, 2007, 47(11): 1553-1570.
|
[5] |
KUANG S B, ZHOU M M, YU A B. CFD-DEM modelling and simulation of pneumatic conveying: a review[J]. Powder Technology, 2019, 365: 186-207.
|
[6] |
BANAEI M, JEGERS J, VAN SINT ANNALAND M, et al. Tracking of particles using TFM in gas-solid fluidized beds[J]. Advanced Powder Technology, 2018, 29(10): 2538-2547.
|
[7] |
HOU Q F, E D Y, YU A B. Discrete particle modeling of lateral jets into a packed bed and micromechanical analysis of the stability of raceways[J]. AIChE Journal, 2016, 62(12): 4240-4250.
|
[8] |
WEI G C, ZHANG H, AN X Z, et al. CFD-DEM study on heat transfer characteristics and microstructure of the blast furnace raceway with ellipsoidal particles[J]. Powder Technology, 2019, 346: 350-362.
|
[9] |
夏修浩,周连勇,马华庆,等.颗粒形状模型对高炉布料过程DEM模拟的影响[J]. 钢铁研究学报, 2021, 33(12): 1228-1236.
|
[10] |
LIU S D, ZHOU Z Y, DONG K J, et al. Numerical investigation of burden distribution in a blast furnace[J]. Steel Research International, 2015, 86(6): 651-661.
|
[11] |
LI Z Y, KUANG S B, LIU S D, et al. Numerical investigation of burden distribution in ironmaking blast furnace[J]. Powder Technology, 2019, 353: 385-397.
|
[12] |
吴俊明,周振峰,彭星,等.氧气高炉回旋区内煤粉燃烧行为的三维数值模拟研究[J].有色金属科学与工程, 2018, 9(4): 1-8.
|
[13] |
HOU Q F, E D Y, KUANG S B, et al. DEM-based virtual experimental blast furnace: A quasi-steady state model[J]. Powder Technology, 2017, 314: 557-566.
|
[14] |
E D Y. Validation of CFD-DEM model for iron ore reduction at particle level and parametric study[J]. Particuology, 2020, 51(4): 163-172.
|
[15] |
HOU Q F, E D Y, KUANG S B, et al. A Transient discrete element method-based virtual experimental blast furnace model[J]. Steel Research International, 2020, 91(8): 1-11.
|
[16] |
YAGI S, KUNII D. Studies on combustion of carbon particles in flames and fluidized beds[J]. Symposium (International) on Combustion, 1955, 5(1): 231-244.
|
[17] |
TAKAHASHI R, YAGI J I, OMORI Y. Rate of reduction of iron oxide pellets with hydrogen[J]. Transactions of the Iron and Steel Institute of Japan, 1971, 57(10): 1597-1605.
|
[18] |
MUCHI I. Mathematical model of blast furnace[J]. Transactions of the Iron and Steel Institute of Japan, 1967, 7(5): 223-237.
|
[19] |
OMORI Y. Blast furnace phenomena and modelling[M]. Dordrecht: Springer Netherlands, 1987.
|
[20] |
DONG X F, YU A B, CHEW S J, et al. Modeling of blast furnace with layered cohesive zone[J]. Metallurgical and Materials Transactions B, 2010, 41(2): 330-349.
|
[21] |
KUANG S B, LI Z Y, YAN D L, et al. Numerical study of hot charge operation in ironmaking blast furnace[J]. Minerals Engineering, 2014, 63: 45-56.
|
[22] |
WATAKABE S, MIYAGAWA K, MATSUZAKI S, et al. Operation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnace[J]. ISIJ International, 2013, 53(12): 2065-2071.
|
[23] |
NISHIOKA K, UJISAWA Y, TONOMURA S, et al. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 project), part 1: hydrogen reduction in the blast furnace[J]. Journal of Sustainable Metallurgy, 2016, 2(3): 200-208.
|
[1] | GUO Xueyi, JIANG Baocheng, WANG Qinmeng, WANG Songsong, TIAN Qinghua, LI Dong. Research progress in the simulation of oxygen bottom-blowing copper smelting[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 9-19. DOI: 10.13264/j.cnki.ysjskx.2022.03.002 |
[2] | LU Jingling, XU Cunying, LI Jianru, XIANG Qinqin, CHEN Xiao, HUA Yixin, ZHANG Qibo, LI Yan. Electrochemical behavior of Ni(Ⅱ) in different ionic liquids[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 1-9. DOI: 10.13264/j.cnki.ysjskx.2022.02.001 |
[3] | ZHOU Langya, WANG Richu, WANG Xiaofeng, CAI Zhiyong, DONG Cuige. On the hot deformation behavior and constitutive model of SiCp/2014Al composites[J]. Nonferrous Metals Science and Engineering, 2021, 12(4): 66-74. DOI: 10.13264/j.cnki.ysjskx.2021.04.009 |
[4] | YE Changmei, CHEN Gong, WEI Mingren, TIAN Yabin, HUANG Jingjing, WANG Zhaowen, YANG Shaohua. Electrochemical behavior of W6+ in NaCl-KCl-NaF-WO3 molten salt system[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 20-27. DOI: 10.13264/j.cnki.ysjskx.2019.01.004 |
[5] | YANG Shaohua, ZHANG Dancheng, ZHAO Yujuan, LI Linshan. A study on the corrosion behavior of 5083 aluminum magnesium alloy in the NaCl solutions of different pH by SECM[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 22-27. DOI: 10.13264/j.cnki.ysjskx.2018.01.004 |
[6] | Yang Fengli, Wang Haoran, Yang Shaohua, Wang Jun, Lai Xiaohui. The Study of Electrochemical Behavior of Sr2+ in LiF-SrF2-SrO Molten Salt System[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 33-36, 66. DOI: 10.13264/j.cnki.ysjskx.2016.05.006 |
[7] | YANG Fengli, WANG Haoran, XIE Baoru, LAI Xiaohui, WANG Jun, YANG Shaohua. Electrochemical behavior of tungstate ion on gold and silver electrode[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 9-13. DOI: 10.13264/j.cnki.ysjskx.2016.04.002 |
[8] | Guichun He YaHe, Hua Yanan, Jiang Wei, zhang Bing. Molecular dynamics simulation and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2015.05.017 |
[9] | YANG You-ming, ZHANG Xiao-lin, NIE Hua-ping, LU Bo, QIAO Shan. The Chemical Behaviors of Mo(W)-H2O System Solution[J]. Nonferrous Metals Science and Engineering, 2011, 2(2): 15-18. DOI: 10.13264/j.cnki.ysjskx.2011.02.016 |
[10] | SHEN Wen. Network Monitoring and Controlling System for Measurement Based on MODBUS[J]. Nonferrous Metals Science and Engineering, 2007, 21(2): 42-44. |