Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011
Citation: XIANG Zhongning, HE Qinchuan, WANG Yiqun, REN Lianggui. Synthesis and wave absorption properties of hollow SiC spherical nanoparticles[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 83-92. DOI: 10.13264/j.cnki.ysjskx.2022.01.011

Synthesis and wave absorption properties of hollow SiC spherical nanoparticles

More Information
  • Received Date: June 27, 2021
  • Available Online: April 13, 2022
  • Special structure and composition are the key factors in determining electromagnetic wave absorption performance. In this study, spherical nanoparticles of carbon-coated silica (SiO2@C) were synthesized by self-assembly technique, and then the hollow SiC spherical nanoparticles were prepared via high temperature heat-treatment. The morphology and phase of the samples were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the electromagnetic parameters of the samples were tested by the vector network analyzer. The absorbing performance of SiC was regulated with the help of its dielectric loss and special microstructure, and the reflection loss (RL) of the samples with different coating thicknesses was calculated. The results showed that SiC nanoparticles produced by high temperature heat-treatment had been transformed from irregular shape to hollow spherical structure with the increase of carbon content in SiO2@C. When the frequency was 14.06 GHz, the minimum reflection loss (RLmin) was -18.23 dB, and the effective absorption bandwidth (RL≤-10 dB) reached 5.34 GHz with a corresponding coating thickness of 1.9 mm, reflecting the characteristics of thin thickness and wide absorption band.
  • [1]
    熊厚冬, 陈洋, 王磊, 等. 氧化石墨烯修饰FeSiCr纳米复合材料的微波吸收性能[J]. 有色金属科学与工程, 2020, 11(3): 44-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202003006
    [2]
    LEI Y M, YAO Z G, LIN H Y, et al. Synthesis and enhanced microwave absorption properties of urchin- like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites[J]. Polymer Bulletin, 2018, 76: 3113-3125. doi: 10.1007/s00289-018-2541-5
    [3]
    SHEN B, ZHAI W T, TAO M M, et al. Lightweight, multifunctional polyetherimide/Graphene@Fe3O4 composite foams for shielding of electromagnetic pollution[J]. ACS Applied Materials and Interfaces, 2013, 5(21): 11383-11391. doi: 10.1021/am4036527
    [4]
    JOSEPH N, VARGHESE J, SEBASTIAN M T. Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution[J]. Composites Part B-Engineering, 2017, 123: 271-278. doi: 10.1016/j.compositesb.2017.05.030
    [5]
    SU T T, ZHAO B, HAN F Q, et al. The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties[J]. Journal of Materials Science Materials in Electronics, 2019, 30(1): 475-484. doi: 10.1007/s10854-018-0312-6
    [6]
    何朋, 蔡永珠, 曹茂盛. 剥离的碳化钛(d-Ti3C2Tx)纳米片的吸波性能[J]. 表面技术, 2020, 49(2): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202002010.htm
    [7]
    李金锋, 漆小鹏, 王黎, 等. 纳米碳材料在耐火材料上的研究进展[J]. 有色金属科学与工程, 2020, 11(1): 39-45. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=202001007
    [8]
    HOU Y, CHENG L F, ZHANG Y N, Y. et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption[J]. ACS Applied Materials and Interfaces, 2017, 9(8): 7265-7271. doi: 10.1021/acsami.6b15721
    [9]
    HU Y, LUO F, YANG Z N, et al. Improvement dielectric and microwave properties of SiCf/SiC-AlPO4 composites prepared by precursor infiltration and pyrolysis process[J]. Journal of Alloys and Compounds, 2017, 699: 498-504. doi: 10.1016/j.jallcom.2016.12.374
    [10]
    KIM T E, KHISHIGBAYER K E, CHO K Y. Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber[J]. Journal of Advanced Ceramics, 2017(6): 59-66. doi: 10.1007/s40145-017-0218-4
    [11]
    王庆禄, 王莉, 李雍, 等. 钴-铁沉积碳化硅颗粒及其吸波性能[J]. 表面技术, 2020, 49 (2): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202002009.htm
    [12]
    WANG H Y, ZHU D M, WANG X F, et al. Influence of silicon carbide fiber type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites[J]. Composites Part A-Applied Science and Manufacturing, 2017, 93: 10-17. doi: 10.1016/j.compositesa.2016.11.006
    [13]
    MU Y, ZHOU W C, HU Y, et al. Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process[J]. Journal of Alloys Compounds, 2015, 637: 261-266. doi: 10.1016/j.jallcom.2015.03.031
    [14]
    郝婧, 曹雪媛, 潘凯. 碳化硅纳米纤维的制备及电磁波吸收性能[J]. 高分子材料科学与工程, 2020, 36(2): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC202002019.htm
    [15]
    LI Z J, WANG X H, LING H, et al. Electromagnetic wave absorption properties of SiC@SiO2 nanoparticles fabricated by a catalyst-free precursor pyrolysis method[J]. Journal of Alloys and Compounds, 2020, 830: 154643. doi: 10.1016/j.jallcom.2020.154643
    [16]
    LI B B, MAO B X, HE T, et al. Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam[J]. ACS Applied Electronic Materials, 2019, (1): 2140-2149. https://www.researchgate.net/publication/336167345_Preparation_and_Microwave_Absorption_Properties_of_Double-Layer_Hollow_Reticulated_SiC_Foam
    [17]
    WEI B, ZHOU J T, YAO Z J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Applied Surface Science, 2020, 508: 145261. doi: 10.1016/j.apsusc.2020.145261
    [18]
    HOU Y H, YUAN H L, QU X L, et al. Synthesis and high-performance electromagnetic wave absorption of SiC@C composites[J]. Materials Letters, 2017, 209: 90-93. doi: 10.1016/j.matlet.2017.07.114
    [19]
    STOöBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26: 62-69. doi: 10.1016/0021-9797(68)90272-5
    [20]
    ZHANG H W, NOONAN O, HUANG X D, et al. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes[J]. ACS Nano, 2016, 10(4): 4579-4586. doi: 10.1021/acsnano.6b00723
    [21]
    CAI Z X, SU L, WANG H J, et al. Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption[J]. ACS Applied Materials and Interfaces, 2020, 12(7): 8555-8562. doi: 10.1021/acsami.9b20636
    [22]
    SEO W S, KOUMOTO K. Stacking faults in β-SiC formed during carbothermal reduction of SiO2[J]. Journal of American Ceramic Society, 1996, 79(7): 1777-1782. doi: 10.1111/j.1151-2916.1996.tb07995.x
    [23]
    SU J J, GAO B, CHEN Z B, et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(12): 6600-6607. doi: 10.1021/acssuschemeng.6b01483
    [24]
    WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Progress in Materials Science, 2015, 72: 1-60. http://www.onacademic.com/detail/journal_1000037419288210_3a3e.html
    [25]
    WANG J Q, LIU L, JIAO S L, et al. Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption[J]. Advanced Functional Materials, 2020, 30(45): 2002595. doi: 10.1002/adfm.202002595
    [26]
    LI Q Q, ZHAO Y H, LI X H, et al. MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance[J]. Small, 2020, 16 (42): 2003905. doi: 10.1002/smll.202003905
    [27]
    LAN X L, WANG Z J. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces[J]. Carbon, 2020, 170: 517-526. doi: 10.1016/j.carbon.2020.08.052
    [28]
    TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon, 2021, 172: 542-555. doi: 10.1016/j.carbon.2020.10.062
    [29]
    XIAO S S, MEI H, HAN D Y, et al. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption[J]. Carbon, 2017, 122: 718-725. doi: 10.1016/j.carbon.2017.07.023
    [30]
    XIAO S S, MEI H, HAN D Y, et al. Sandwich-like SiCnw/C/Si3N4 porous layered composite for full X-band electromagnetic wave absorption at elevated temperature[J]. Composites Part B-Engineering, 2020, 183: 107629. doi: 10.1016/j.compositesb.2019.107629
    [31]
    LIU P J, YAO Z J, ZHOU J T, et al. Small magnetic Co-doped Ni Zn ferrite/graphene nanocomposites and their dualregion microwave absorption performance[J]. Journal of Materials Chemistry C, 2016(4): 9738-9749. https://pubs.rsc.org/en/content/articlelanding/2016/tc/c6tc03518c#!
    [32]
    LIANG X H, ZHANG X M, LIU W, et al. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance[J]. Journal of Materials Chemistry C, 2016, 28(4): 6816-6821. https://pubs.rsc.org/en/content/articlelanding/2016/tc/c6tc02006b
    [33]
    ZHOU X F, JIA Z R, ZHANG X X, et al. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth[J]. Journal of Materials Science & Technology, 2021, 87: 120-132. https://www.sciencedirect.com/science/article/pii/S1005030221002310
    [34]
    LIU X F, HAO C C, HE L H, et al. Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption[J]. Nano Research, 2018(11): 4169-4182. http://d.old.wanfangdata.com.cn/Periodical_nmyj-z201808020.aspx
    [35]
    ZHANG K, LUO J H, YU N, et al. Synthesis and excellent electromagnetic absorption properties of reduced graphene oxide/PANI/BaNd0.2Sm0.2Fe11.6O19 nanocomposites[J]. Journal of Alloys and Compounds, 2019, 779: 270-279. https://www.sciencedirect.com/science/article/pii/S0925838813008566
    [36]
    LUO J H, ZHANG K, CHENG M L, et al. MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption[J]. Chemical Engineering Journal, 2020, 380: 122625. doi: 10.1016/j.cej.2019.122625
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]LIAN Baidong, QIAO Dengpan, YANG Tianyu, WANG Jun, CHEN Jian, LI Shaoteng, LI Yongming, GAO Bo, LONG Gan. Research on pipeline transportation design of tailings slurry from a tin mine in Yunnan Province based on ANSYS-FLUENT[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 407-421. DOI: 10.13264/j.cnki.ysjskx.2024.03.011
    [3]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [4]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [5]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [6]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [7]GUO Xueyi, WANG Songsong, WANG Qinmeng, TIAN Qinghua. Development and application of oxygen bottom blowing copper smelting simulation software SKSSIM[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2017.04.001
    [8]WEN Yan, ZHANG Qinying, GUO Shengda, SU Wei, HUANG Zhu, CHEN Hao. SPS sintering process of WC-6Co cemented carbide[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 74-78. DOI: 10.13264/j.cnki.ysjskx.2017.03.012
    [9]LI Ming-zhou, HUANG Jin-di, TONG Chang-ren, ZHANG Wen-hai. A composition soft-sensing model of FeO-Fe2O3-SiO2 ternary slag system based on two-temperature two-density method[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 37-41. DOI: 10.13264/j.cnki.ysjskx.2016.05.007
    [10]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
  • Cited by

    Periodical cited type(2)

    1. 王小锋,陈洪钧,周红莉,彭超群,王日初,曾婧. 直写成型用碳化硅浆料及其流变性能研究. 有色金属科学与工程. 2024(01): 80-86 . 本站查看
    2. 高静,马志军,刘福立,翁兴媛,程亮,周智静. 钕取代对钴铁氧体结构、磁性及电磁波吸收性能的影响. 稀有金属. 2024(03): 440-447 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (164) PDF downloads (5) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return