Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Chao, CHEN Jiqiang, WEN Feng, LI Qilong, ZHAO Hongjin. Preparation of Al-Cu-Li alloy single crystal by cyclic strain-high temperature annealing[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 81-89. DOI: 10.13264/j.cnki.ysjskx.2021.01.011
Citation: LIU Chao, CHEN Jiqiang, WEN Feng, LI Qilong, ZHAO Hongjin. Preparation of Al-Cu-Li alloy single crystal by cyclic strain-high temperature annealing[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 81-89. DOI: 10.13264/j.cnki.ysjskx.2021.01.011

Preparation of Al-Cu-Li alloy single crystal by cyclic strain-high temperature annealing

More Information
  • Received Date: July 15, 2020
  • Published Date: February 27, 2021
  • Al-Cu-Li alloy single crystals were prepared by cyclic pre-tensile strain-high temperature annealing. The paper discussed the effects of tensile strain, number of cyclic strain annealing, and strain annealing temperature on grain growth of Al-Cu-Li alloy and the process and mechanism of grain growth during cyclic pre-tensile strain-high temperature annealing. The research results showed that the alloy grains could grow abnormally through cyclic pre-tension strain annealing, and the centimeter-level macro coarse grains were successfully prepared. Their growth mechanism was mainly nucleation recrystallization abnormal grain growth by strain-induced grain boundary migration. In addition, studying the effects of the pre-stretching strain of Al-Cu-Li alloy, the number of cyclic strain annealing and the temperature of strain annealing on the grain growth was quite helpful to develop the best single crystal preparation. The results showed that the optimal process of the Al-Cu-Li alloy was annealed at 540 ℃ for 48 h after pre-tensioned strain of about 0.8%, with cycle number 2 to 3 times.
  • [1]
    XU J J, DENG Y L, CHEN J Q, et al. Effect of ageing treatments on the precipitation behavior and mechanical properties of Al-Cu-Li alloys[J]. Materials Science and Engineering: A, 2020: 773. http://www.sciencedirect.com/science/article/pii/S092150931931665X
    [2]
    ZHU Y, POPLAWSKY J D, LI S, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys[J]. Acta Materialia, 2020, 189: 204-213. doi: 10.1016/j.actamat.2020.03.006
    [3]
    ZHANG J, LI Z, XU F, et al. Regulating effect of pre-stretching degree on the creep aging process of Al-Cu-Li alloy[J]. Materials Science and Engineering: A, 2019, 763: 138157. doi: 10.1016/j.msea.2019.138157
    [4]
    MA P, ZHAN L, LIU C, et al. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy[J]. Journal of Alloys and Compounds, 2019, 790: 8-19. doi: 10.1016/j.jallcom.2019.03.072
    [5]
    孙军伟, 张荣伟, 李升燕, 等. 5182铝合金热变形行为研究[J]. 有色金属科学与工程, 2018, 9(5): 43-48. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201805009
    [6]
    ZHANG J, WANG C, ZHANG Y, et al. Effects of creep aging upon Al-Cu-Li alloy: strength, toughness and microstructure[J]. Journal of Alloys and Compounds, 2018, 764: 452-459. doi: 10.1016/j.jallcom.2018.06.103
    [7]
    XU Y, ZHAN L, LI W. Effect of pre-strain on creep aging behavior of 2524 aluminum alloy[J]. Journal of Alloys and Compounds, 2017, 691: 564-571. doi: 10.1016/j.jallcom.2016.08.291
    [8]
    ZHANG J, DENG Y, ZHANG X. Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates[J]. Materials Science and Engineering: A, 2013, 563: 8-15. doi: 10.1016/j.msea.2012.10.055
    [9]
    HARGARTER H, LYTTLE M T, STARKE E A. Effects of preferentially aligned precipitates on plastic anisotropy in Al-Cu-Mg-Ag and Al-Cu alloys[J]. Materials Science & Engineering A, 1998, 257(1): 87-99. http://www.sciencedirect.com/science/article/pii/S0921509398008260
    [10]
    ZHU A W, CHEN J, STARKE E A. Precipitation strengthening of stress-aged Al-xCu alloys[J]. Acta Materialia, 2000, 48(9): 2239-2246. doi: 10.1016/S1359-6454(00)00026-4
    [11]
    CHEN J Q, DENG Y L, GUO X B. Revisit the stress-orienting effect of θ' in Al-Cu single crystal during stress aging[J]. Materials Characterization, 2018, 135: 270-277. doi: 10.1016/j.matchar.2017.11.053
    [12]
    CHEN J Q, LIU C, LI Q L, et al. Stress aging of Al-Cu-Mg-Ag single crystal: the effect of the loading orientations[J]. Journal of Alloys and Compounds, 2020, 816: 152635. doi: 10.1016/j.jallcom.2019.152635
    [13]
    WANG Y, LI S, LIU Z, et al. Anisotropy-dependent seaweed growth during directional solidification of Al-4.5%Cu single crystal[J]. Scripta Materialia, 2020, 186: 121-126. doi: 10.1016/j.scriptamat.2020.05.006
    [14]
    武雅璐, 武建国, 李秋书. 定向凝固条件下铝合金力学性能和导电性研究[J]. 热加工工艺, 2016, 45(21): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201621018.htm
    [15]
    马小红, 徐亚军, 宋玉萍. 高纯铝单晶拉伸性能及断口形貌分析[J]. 世界有色金属, 2018(12): 8-9. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201812002.htm
    [16]
    LYUBIMOVA T P, IVANTSOV A O, KHLYBOV O, et al. Influence of submerged heating on vertical Bridgman crystal growth of silicon under travelling magnetic field[J]. Journal of Crystal Growth, 2020, 531: 125340. doi: 10.1016/j.jcrysgro.2019.125340
    [17]
    PEREZ-PRADO M T, DONCEL G G. Lattice rotation during severe local shear in a fully hardened Al-4%Cu-0.1%Fe single crystal alloy[J]. Scripta Materialia, 2006, 54(5): 915-919. doi: 10.1016/j.scriptamat.2005.10.071
    [18]
    陈继强. 基于晶体学取向的2000系铝合金单晶应力时效基础研究[D]. 长沙: 中南大学, 2017.
    [19]
    潘金生, 仝健民, 田民波. 材料科学基础. 修订版[M]. 北京: 清华大学出版社, 2011.
    [20]
    BECK P A, SPERRY P R. Strain induced grain boundary migration in high purity aluminum[J]. Journal of Applied Physics, 1950, 21(2): 150-152. doi: 10.1063/1.1699614
    [21]
    BELLIER S P, DOHERTY R D. The structure of deformed aluminium and its recrystallization-investigations with transmission Kossel diffraction[J]. Acta Metallurgica, 1977, 25(5): 521-538. doi: 10.1016/0001-6160(77)90192-4
    [22]
    MARTIN E, MUHAMMAD W, DETOR A J, et al. "Strain-annealed" grain boundary engineering process investigated in Hastelloy-X[J]. Materialia, 2020(9): 100544. http://www.sciencedirect.com/science/article/pii/S2589152919303400
  • Related Articles

    [1]SHI Zhenxue, YUE Xiaodai, WANG Zhicheng, ZHAO Jinqian, LIU Shizhong. Effects of Re content on the microstructure and tensile properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 113-118. DOI: 10.13264/j.cnki.ysjskx.2020.04.017
    [2]GUO Qiankun, HUANG Jili, ZHOU Miaomiao, HU Shun, ZHONG Shengwen. Synthesis and electrochemical performance of single crystal LiNi0.83Co0.1Mn0.07O2 cathode material[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 23-28. DOI: 10.13264/j.cnki.ysjskx.2020.04.004
    [3]SHI Zhenxue, ZHAO Jinqian. High cycle fatigue properties of a single crystal superalloy at different temperatures[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 58-63. DOI: 10.13264/j.cnki.ysjskx.2019.03.010
    [4]SHI Zhenxue, LIU Shizhong. Influence of Al content on microstructure and stress rupture properties a Ni-base single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 77-82. DOI: 10.13264/j.cnki.ysjskx.2019.02.011
    [5]SHI Zhenxue, LIU Shizhong, ZHAO Jinqian. Influence of Mo content on microstructure and stability of the fourth-generation single crystal superalloys[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 67-71. DOI: 10.13264/j.cnki.ysjskx.2019.01.011
    [6]SHI Zhenxue, ZHAO Jinqian, LIU Shizhong. Effect of surface defects on the high cycle fatigue properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 50-54. DOI: 10.13264/j.cnki.ysjskx.2018.06.008
    [7]SHI Zhenxue, YANG Wanpeng, LIU Shizhong, WANG Xiaoguang. Effect of long-term aging temperature on the microstructure and tensile properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 35-39. DOI: 10.13264/j.cnki.ysjskx.2018.04.006
    [8]LIU Shizhong, SHI Zhenxue, XIONG Jichun, LI Jiarong. Microstructure and stress rupture properties of a single crystal superalloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 118-121. DOI: 10.13264/j.cnki.ysjskx.2017.01.020
    [9]YANG Yu-lin, LI Ming-mao. Microstructure and properties evolution of single crystal copper during strong cooling deformation annealing process[J]. Nonferrous Metals Science and Engineering, 2013, 4(6): 24-27. DOI: 10.13264/j.cnki.ysjskx.2013.06.015
    [10]AN Gui-huan, ZHAO Hong-jin, YANG Bin, ZHANG Ming-ming, XU Gao-lei, LI Jin-de. Choice of key materials in casting single-crystal copper processing equipment by heated mould continuous casting[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 20-23. DOI: 10.13264/j.cnki.ysjskx.2012.02.018

Catalog

    Article Metrics

    Article views (75) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return