Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
SONG Weiyuan, LIN Gaoyong, LI Qi. Influence of conditioning time before artificial aging on the microstructure and properties of 7055 aluminium alloy extruded tube[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 37-42. DOI: 10.13264/j.cnki.ysjskx.2018.05.007
Citation: SONG Weiyuan, LIN Gaoyong, LI Qi. Influence of conditioning time before artificial aging on the microstructure and properties of 7055 aluminium alloy extruded tube[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 37-42. DOI: 10.13264/j.cnki.ysjskx.2018.05.007

Influence of conditioning time before artificial aging on the microstructure and properties of 7055 aluminium alloy extruded tube

More Information
  • Received Date: June 16, 2018
  • Published Date: October 30, 2018
  • The effect of conditioning time before artificial aging on the microstructure and properties of 7055 aluminum alloy extruded pipe was investigated by means of Vickers hardness test, room temperature tensile test, electrical conductivity test, slow strain tensile test and transmission electron microscopy (TEM). The results showed that GP region was precipitated first during the conditioning time, and provided nucleation sites for η and η', phases so that the nucleation density of η and η', phases increased. Therefore, the electrical conductivity and mechanical properties of the alloy improved. The tensile strength, elongation and electrical conductivity of the 7055 aluminium alloy were 677.9 MPa, 14.9 %, 29.8 % IACS, respectively, when the conditioning time was 6.5 h. With the prolongation of the conditioning time before artificial aging, the tensile strength of the alloy decreased and its conductivity increased. When the conditioning time was 48h, the tensile strength, elongation rate and electrical conductivity of 7055 aluminium alloy were 649.7 MPa, 10.6 %, 36.8 % IACS, respectively, and the alloy acquired its best comprehensive properties.
  • [1]
    MONDAL C, MUKHOPADHYAY A K, RAGHU T, et al. Tensile properties of peak aged 7055 aluminum alloy extrusions[J]. Materials Science & Engineering A, 2007, 454(25):673-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211909449
    [2]
    DURSUM T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56(4):862-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232262557
    [3]
    郭红军.日新月异的航空金属材料[J].大飞机, 2015(4):22-25. doi: 10.3969/j.issn.2095-3399.2015.04.005
    [4]
    王井井, 黄元春, 刘宇, 等.时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J].有色金属科学与工程, 2018, 9(2):47-55. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201711022
    [5]
    虞红春, 龚静, 张宁, 等. Al-Zn-Mg-Cu系超高强铝合金的研究进展[J].世界有色金属, 2013(增刊1):268-271. http://d.old.wanfangdata.com.cn/Periodical/cldb200503014
    [6]
    HONG B M X. Effect of retrogression and reaging on stress corrosion cracking of spray formed Al alloy[J]. Materials Sciences & Applications, 2016, 7(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4236_msa.2016.71001
    [7]
    刘胜胆, 张新明, 黄振宝, 等.固溶处理对高纯7055铝合金组织的影响[J].材料热处理学报, 2006, 27(3):54-59. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb200603012
    [8]
    李海, 郑子樵, 王芝秀. 7055铝合金二次时效特征研究--(Ⅱ)显微组织与断口形貌特征[J].稀有金属材料与工程, 2005, 34(8):1230-1234. doi: 10.3321/j.issn:1002-185X.2005.08.013
    [9]
    戴晓元, 夏长清, 刘昌斌, 等.固溶处理及时效对7XXX铝合金组织与性能的影响[J].材料热处理学报, 2007, 28(4):59-63. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb200704014
    [10]
    张茁, 陈康华, 黄兰萍, 等.高温预析出对7055铝合金组织和力学性能的影响[J].中国有色金属学报, 2003, 13(6):158-163. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb200306029
    [11]
    冯迪, 张新明, 邓运来, 等.预时效温度及回归加热速率对7055铝合金组织及性能的影响[J].中国有色金属学报, 2014(5):1141-1150. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201405005
    [12]
    赵鸿金, 曾文锋, 孔军, 等. 7055铝合金多级均匀化工艺研究[J].有色金属科学与工程, 2013, 4(3):49-53. http://ysjskx.paperopen.com/oa/darticle.aspx?type=view&id=201303010
    [13]
    陈康华, 刘红卫, 刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南大学学报(自然科学版), 2000, 31(6):528-531. doi: 10.3969/j.issn.1672-7207.2000.06.015
    [14]
    陈康华, 张茁, 刘红卫, 等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响[J].中南大学学报(自然科学版), 2003, 34(2):114-118. doi: 10.3969/j.issn.1672-7207.2003.02.002
    [15]
    李海, 郑子樵, 王芝秀.过时效-重固溶-再时效处理对7055铝合金组织与性能的影响[J].材料热处理学报, 2004, 25(3):57-61. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb200403015
    [16]
    LUMLEY R N, POLMEAR I J, MORTON A J. Heat treatment of age hardenable aluminium alloys utilizing secondary precipitation: US, US 7037391 B2[P]. 2006.
    [17]
    GRONGØ, SHERCLIFF H R. Microstructural modeling in metals processing[J]. Progress in Materials Science, 2002, 47(2):163-282. doi: 10.1016/S0079-6425(00)00004-9
    [18]
    LUMELY R N, POLMEAR I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy[J]. Scripta Materialia, 2004, 50(9):1227-1231. doi: 10.1016/j.scriptamat.2004.02.001
    [19]
    林振铭, 李峥璐, 贾宇博, 等.非等温时效处理对Al-Zn-Mg-(Cu)合金性能和显微组织的影响[J].上海金属, 2016, 38(4):36-40. doi: 10.3969/j.issn.1001-7208.2016.04.008
    [20]
    张坤, 戴圣龙, 黄敏, 等.高纯Al-Cu-Mg-Ag合金的多级断续时效工艺研究[J].航空材料学报, 2007, 27(4):1-5. doi: 10.3969/j.issn.1005-5053.2007.04.001
    [21]
    王雪玲, 于莉莉, 赵永军, 等.时效前停放时间和时效保温时间对6082-T651铝合金板材组织和性能的影响[J].轻合金加工技术, 2011, 39(2):25-28. doi: 10.3969/j.issn.1007-7235.2011.02.004
    [22]
    盖洪涛, 王彦俊, 刘兆伟, 等.停放时间对2024铝合金挤压型材力学性能影响[J].热处理技术与装备, 2017, 38(1):12-14. http://d.old.wanfangdata.com.cn/Periodical/gwjsrcl201701004
    [23]
    李学朝.铝合金材料组织与金相图谱[M].北京:冶金工业出版社, 2010.
    [24]
    魏继承, 刘显东, 耿照华. 7055铝合金的时效硬化特性与电导率[J].轻合金加工技术, 2006, 34(12):49-51. doi: 10.3969/j.issn.1007-7235.2006.12.016
    [25]
    李海, 郑子樵, 王芝秀.过时效-重固溶-再时效处理对7055铝合金组织与性能的影响[J].材料热处理学报, 2004, 25(3):57-61. http://d.old.wanfangdata.com.cn/Periodical/jsrclxb200403015
    [26]
    TSAI T S, CHUNANG T H. On the relationship between electrical conductivity and stress corrosion susceptibility of 7075 and 7475 aluminum alloys[J]. Corrosion -Houston Tx-, 1996, 52(6):414-416. doi: 10.5006/1.3292127
    [27]
    GB/T 228-2002, 金属材料室温拉伸试验方法[S].
    [28]
    沈凯, 尹志民, 王涛.时效处理状态下7055铝合金的微观结构演变[J].南京航空航天大学学报, 2007, 39(1):133-136. doi: 10.3969/j.issn.1005-2615.2007.01.028
    [29]
    SHE H, SHU D, WANG J, et al. Influence of multi-microstructural alterations on tensile property inhomogeneity of 7055 aluminum alloy medium thick plate[J]. Materials Characterization, 2016, 113:189-197. doi: 10.1016/j.matchar.2016.01.020
    [30]
    HB 5254-83, 变形铝合金拉伸应力腐蚀试验方法[S].
  • Related Articles

    [1]FAN Wenxin, GAO Yang, WANG Pengfei, CHEN Yan, YUAN Xia, PENG Lijun, FU Yabo, ZHANG Zhongtao. Effect of Ni and Si additions on the microstructure and mechanical properties of Cu-7Sn alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 85-95. DOI: 10.13264/j.cnki.ysjskx.2025.01.010
    [2]ZHU Wenjia, ZHAO Zhongmei, LONG Dengcheng, ZHANG Xin, QIN Junhu, LU Hongbo. Study on microstructure and properties of SnBi36Ag0.5Sbx solder alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 536-542. DOI: 10.13264/j.cnki.ysjskx.2023.04.012
    [3]XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008
    [4]LI Xiaohan, HE Jianing, SU Ruiming, YANG Yuping, NIE Sainan, TAN Bing. Effect on stress corrosion cracking of alloy 7075 with two-step aging[J]. Nonferrous Metals Science and Engineering, 2022, 13(3): 69-75. DOI: 10.13264/j.cnki.ysjskx.2022.03.010
    [5]QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
    [6]ZHANG Wangcheng, LI Qiang, HUANG Cong, ZENG Xianshan. Effects of solid solution time on microstructure and properties of the UNS N10276 welded tube[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 88-92. DOI: 10.13264/j.cnki.ysjskx.2022.02.012
    [7]XIANG Ziqi, SHEN Huiyuan, HE Yang, SHENG Xiaofei, XIAO Zhu. Research on improving the corrosion resistance of conductive CuSn alloy for socket[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 76-82. DOI: 10.13264/j.cnki.ysjskx.2022.01.010
    [8]LEI Xue, WANG Richu, PENG Chaoqun, FENG Yan, SUN Yuehua. Effect of Nd on the microstructure, mechanical properties, and corrosion of Mg-11 Li-3Al-2Zn-0.2Zr alloy[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 46-53. DOI: 10.13264/j.cnki.ysjskx.2019.03.008
    [9]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [10]HU Min, CHEN Min, LUO Yan, LIU Xiaoqiu. Effect of thermal spray coatings of WC-Co on the stress in jaw crusher tooth plate[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 83-87. DOI: 10.13264/j.cnki.ysjskx.2016.06.0014

Catalog

    Article Metrics

    Article views (103) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return