Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LIU Huizhong, RUI Zuowei, ZHU Hejun, PENG Zhilong. Recognition on ore zone separation points target detection and identification in mineral processing shaking table based on improved YOLOv5 algorithm[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 115-124. DOI: 10.13264/j.cnki.ysjskx.2025.01.013
Citation: LIU Huizhong, RUI Zuowei, ZHU Hejun, PENG Zhilong. Recognition on ore zone separation points target detection and identification in mineral processing shaking table based on improved YOLOv5 algorithm[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 115-124. DOI: 10.13264/j.cnki.ysjskx.2025.01.013

Recognition on ore zone separation points target detection and identification in mineral processing shaking table based on improved YOLOv5 algorithm

More Information
  • Received Date: January 15, 2024
  • Revised Date: March 27, 2024
  • The operation of shaking tables in mineral processing is influenced by multiple parameters, including feed rate, feed concentration, feed grade, and feed particle size, which cause variations in the position, color, and width of the ore bands on the table surface. To ensure the quality of the concentrate, it's necessary for workers to timely adjust the position where the concentrate is collected, maintaining the stability of the concentrate grade. Varying experience and skills of operators often lead to the fluctuations in production indicators. To reduce the labor intensity of operators and enhance the level of automation in mineral sorting with shaking tables, this paper introduces an improved YOLOv5 target detection algorithm, which successfully extracts the boundary points (ore band separation points) and marker information of both the concentrate band and the middling band on the shaking table. Compared with other algorithms such as YOLOv5, SSD, and Faster-RCNN, the improved YOLOv5 algorithm demonstrates the best detection performance with the highest precision, achieving an average precision of 98.3%.

  • [1]
    刘惠中.重选设备在我国金属矿选矿中的应用进展及展望[J].有色金属(选矿部分),2011(增刊1):18-23.
    [2]
    杨文旺,武涛,赵玉华,等.重选摇床智能控制系统的设计与应用[J].黄金,2020,41(8):57-60.
    [3]
    奈尔,汪淑慧.放射性矿石湿法摇床选矿的自动分矿器[J].核原料,1975(2):44-45,49.
    [4]
    杨文旺,何庆浪,兰希雄,等.选矿摇床智能巡检机器人开发与应用[J].有色金属(选矿部分),2020(5):102-106.
    [5]
    和丽芳.郭思哲.黄宋魏,等.一种基于改进萤火虫算法的多阈值摇床彩色矿带分带图像分割法:CN201710338971.0[P]. 2017-10-03.
    [6]
    LIU H Z, YOU K S. Research on image multi-feature extraction of ore belt and real-time monitoring of the tabling by semantic segmentation of Deep Lab V3+[C]//International Conference on Artificial Intelligence and Security. Cham: Springer International Publishing, 2022: 35-49.
    [7]
    李驰骎.基于视觉的摇床自动接矿系统设计[D].昆明:昆明理工大学,2020.
    [8]
    WANG C Y, LIAO H Y M, WU Y H, et al. CSP Net: A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020: 390-391.
    [9]
    HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):1904-16.
    [10]
    LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 2117-2125.
    [11]
    LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
    [12]
    WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV), 2018: 3-19.
    [13]
    许文慧,裴以建,郜冬林,等.基于注意力机制与迁移学习的乳腺钼靶肿块分类[J].激光与光电子学进展,2021, 58(4):146-154.
    [14]
    王吉源.基于高光谱图像的矿物种类深度识别方法[J].有色金属科学与工程,2022,13(5):114-119.
    [15]
    蔡舒平,孙仲鸣,刘慧,等.基于改进型YOLOv4的果园障碍物实时检测方法[J].农业工程学报,2021,37(2):36-43.
    [16]
    蔡逢煌,张岳鑫,黄捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能,2020, 33(10):8.
    [17]
    郝帅,张旭,马旭,等.基于CBAM-YOLOv5的煤矿输送带异物检测[J].煤炭学报,2022,47(11):4147-4156.
    [18]
    ZHENG Z, WANG P, LIU W, et al. Distance-Io U loss: faster and better learning for bounding box regression[C]// Proceedings of the AAAI Conference on Artificial Intelligence,2020, 34(7), 12993-13000.
    [19]
    DAI J, LI Y, HE K, et al. R-fcn: Object detection via region-based fully convolutional networks[J]. Advances in Neural Information Processing Systems, 2016, 1605:06409.
    [20]
    HARIKRISHNAN P M, THOMAS A, GOPI V P,et al. Inception single shot multi-box detector with affinity propagation clustering and their application in multi-class vehicle counting[J]. Applied Intelligence,2021,51(7): 4714-4729.
    [21]
    王俊强, 李建胜, 周学文,等. 改进的SSD算法及其对遥感影像小目标检测性能的分析[J]. 光学学报, 2019, 39(6):10.
  • Related Articles

    [1]DU Mingxing, LENG Jinfeng, LI Zhanzhi, YIN Yuhu. Effect of trace Er and Zr addition on mechanical properties of 6082 Al alloy during solid solution-aging treatment[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 139-146. DOI: 10.13264/j.cnki.ysjskx.2024.01.017
    [2]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [3]ZHAO Fenyan, ZHANG Ligang, NIE Yusong, MIAO Haotian, LIU Libin. Phase equilibrium investigation of the Al-Ni-Er ternary system[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 50-62, 76. DOI: 10.13264/j.cnki.ysjskx.2021.03.007
    [4]WEI Zhenya, LUO Xianping, LIANG Jian, LUO Caigui. Research progress of groundwater pollution detection technology[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 103-108. DOI: 10.13264/j.cnki.ysjskx.2018.02.017
    [5]ZHAO Kui, YU Bin, LI Qiseng, ZHU Zhicheng, KUANG Zeliang. Experimental study on in-situ stress measurement from marble using acoustic emission method[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 88-93. DOI: 10.13264/j.cnki.ysjskx.2017.03.015
    [6]Luo Xiaoyan, Yu Meng, Chen Bin, Meng PengYu. The Design and Simulation of Reactor System Based on Fuzzy Adaptive PID[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 129-134. DOI: 10.13264/j.cnki.ysjskx.2015.05.024
    [7]LIN Shou-guang, XIAO Ling-ling. Application of a fast Susan algorithm to preliminary tungsten processing[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 122-126. DOI: 10.13264/j.cnki.ysjskx.2013.05.005
    [8]CHEN Quan-shui, YU Yu-shan, WANG Xian-cheng. Jinshan Gold Mine Detection Technology in The Sampling Deficiencies and Improve Measures[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 21-24.
    [10]ANG Jian-hua, WEN Shi-you, DENG Xue-liang, LI Qi-yue. The Application of Fiber Optics Detection Technique to Feedback Information Construction in Geotechnical Engineering[J]. Nonferrous Metals Science and Engineering, 2002, 16(4): 6-9.
  • Cited by

    Periodical cited type(1)

    1. 冉剑锋,吕鹏,姚家舒,李亚丽,张良静,尹少华,张利波. 微波加热在稀土冶金与新材料合成的研究进展. 矿产保护与利用. 2020(05): 37-43 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (16) PDF downloads (3) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return