Citation: | QI Dexing, YU Shui, GUO Qiuyue, WEN Yingjiang, QIU Jiayong, MAO Rui. Thermodynamic behavior of calcified carbothermal reduction of zinc ferrite[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 505-512. DOI: 10.13264/j.cnki.ysjskx.2024.04.005 |
By combining thermodynamic calculations and experimental study, the thermodynamic behavior of calcified carbothermal reduction of zinc ferrite in zinc-containing electric arc furnace dust was analyzed, and the effect of reduction temperature and the molar ratio of carbon to oxygen on the calcified carbothermal reduction behavior of zinc ferrite were discussed. The results showed that compared with traditional carbothermal reduction, calcified carbothermal reduction of ZnFe2O4 can produce ZnO at a lower temperature, and some elemental Zn can be directly obtained from ZnFe2O4 at 1 100 K. When the temperature was higher than 1 221 K, both elemental Zn reduced from ZnFe2O4 and Zn reduced from ZnO were volatilized in the form of zinc vapor, and the volatilization was enhanced with the increase of carbon ratio and temperature. Furthermore, calcified carbothermic reduction not only lowered the temperature at which ZnFe2O4 disappeared but also reduced the temperature and carbon consumption required for the reduction to produce metallic iron and zinc. CaO can reconstruct the phase of the material, significantly reducing the temperature points at which the reaction of zinc ferrite with iron oxide produced ZnO, Zn, and Fe, thus allowing ZnFe2O4 to react completely earlier. At a temperature of 1 270 K and a molar ratio of carbon to oxygen (n(C)/n(O)) of 0.7, optimal reduction and separation of zinc and iron in ZnFe2O4 were achieved, with Zn volatilizing in vapor form and Fe being reduced to metallic form.
[1] |
国家统计局. 2022 年 12月份规模以上工业增加值增长 1.3%[EB/OL].(2023-01-17)[2023-05-10]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202301/t20230117_1892124.html.
|
[2] |
谭宇佳, 郭宇峰, 姜涛, 等. 含锌电炉粉尘处理工艺现状及发展[J]. 矿产综合利用, 2017(3): 44-50.
|
[3] |
TANG H M, PENG Z W, WANG L C, et al. Facile synthesis of zinc ferrite as adsorbent from high‑zinc electric arc furnace dust[J]. Powder Technology, 2022, 405: 117479.
|
[4] |
WANG C, GUO Y F, WANG S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(1): 26-36.
|
[5] |
BRANDNER U, ANTREKOWITSCH J, LEUCHTENMUE LLER M. A review on the fundamentals of hydrogen-based reduction and recycling concepts for electric arc furnace dust extended by a novel conceptualization[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31894-31902.
|
[6] |
陈昌. 电炉粉尘的锌铁分离及制备Ni-Zn铁氧体的研究[D]. 武汉:武汉科技大学, 2021.
|
[7] |
余水, 邱家用, 居殿春, 等. 含锌电炉粉尘水热法制备尖晶石型Mn-Zn铁氧体[J]. 化工环保, 2022, 42(4): 447-452.
|
[8] |
KHODARY K E, NAEEM M M, ROUSHDY M H. Utilization of electric arc furnace dust as a solid catalyst in biodiesel production[J]. Clean Technologies and Environmental Policy, 2023,25(1): 299-309.
|
[9] |
GALAL A, SADEK O, SOLIMAN M, et al. Synthesis of nanosized nickel zinc ferrite using electric arc furnace dust and ferrous pickle liquor[J]. Scientific Reports, 2021, 11(1): 1-11.
|
[10] |
毛瑞, 王飞, 金海, 等. 转底炉工艺处理含铁尘泥关键技术[J]. 钢铁, 2020, 55(8): 199-205.
|
[11] |
OMRAN M, FABRITIUS T, HEIKKINEN E P, et al. Microwave catalyzed carbothermic reduction of zinc oxide and zinc ferrite: Effect of microwave energy on the reaction activation energy[J]. RSC Advances, 2020, 10(40): 23959-23968.
|
[12] |
YE Q, LI G H, PENG Z W, et al. Microwave-assisted self-reduction of composite briquettes of zinc ferrite and carbonaceous materials[J]. Powder Technology, 2019, 342: 224-232.
|
[13] |
俞新宇, 彭军, 张芳, 等. 高炉灰与转炉灰微波协同处理提取锌、铁有价组分[J]. 有色金属科学与工程, 2022, 13(4): 10-19.
|
[14] |
王广伟, 刘嘉雯, 李仁国, 等. 回转窑处理固体废弃物的研究进展[J]. 中国冶金,2023, 33(10):1-7.
|
[15] |
孟昕阳, 李宇. 提锌二次尾渣制备微晶玻璃的工艺优化[J]. 有色金属科学与工程, 2020, 11(2): 27-33.
|
[16] |
王成彦, 陈永强. 中国铅锌冶金技术状况及发展趋势:锌冶金[J]. 有色金属科学与工程, 2017, 8(1): 1-7.
|
[17] |
魏汝飞, 张飞虎, 孟东祥, 等. 生物污泥还原钢铁厂含锌粉尘规律[J]. 钢铁, 2023, 58(6): 134-142.
|
[18] |
陈卓, 郑睿琦, 堵伟桐, 等. 含锌粉尘协同处置含铬尘泥的碳热还原试验[J]. 钢铁, 2021, 56(11): 148-159.
|
[19] |
王哲, 王京秀, 林银河, 等. 有机酸选择性浸出钢铁厂转炉粉尘中的锌[J]. 有色金属科学与工程, 2021, 12(6): 1-8.
|
[20] |
HE X, XIE S F, LI X F, et al. Experimental and mechanism research on vacuum carbothermal reduction of zinc-containing electric arc furnace dust[J]. JOM, 2022, 74(8): 3039-3048.
|
[21] |
MATSUKEVICH I, KULINICH N, ROMANOVSKI V. Direct reduced iron and zinc recovery from electric arc furnace dust[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(12): 3453-3458.
|
[22] |
WANG J, ZHANG Y Y, CUI K K, et al. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust-a review[J]. Journal of Cleaner Production, 2021, 298: 126788.
|
[23] |
李洋, 张建良, 袁骧, 等. 铁酸锌碳热还原动力学及反应机理[J]. 工程科学学报, 2023, 45(1): 82-90.
|
[24] |
汪鑫, 邓寅祥, 许继芳, 等. 铁酸锌配碳选择性还原的热力学分析和试验研究[J]. 矿产综合利用, 2020(2): 167-171.
|
[25] |
CHAIRAKSA-FUJIMOTO R, INOUE Y, UMEDA N, et al. New pyrometallurgical process of EAF dust treMPaent with CaO addition[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 788-797.
|
[26] |
RYAZANOV A G, SENIN A V, KORNILOV N A. The effect of temperature and roasting time on the conversion of zinc ferrite to zinc oxide in the electric Arc furnace dust[J]. IOP Conference Series: Materials Science and Engineering, 2020,969(1): 012040.
|
[27] |
XIE Z Q, JIANG T, CHEN F, et al. Phase transformation and zinc extraction fromzinc ferrite by calcium roasting and ammonia leaching process[J]. Crystals, 2022, 12(5): 641.
|
[28] |
LV W, GAN M, FAN X H, et al. Mechanism of calcium oxide promoting the separation of zinc and iron in metallurgical dust under reducing MPaosphere[J]. Journal of Materials Research and Technology, 2019, 8(6): 5745-5752.
|
[29] |
XIE Z Q, LI G, GUO Y, et al. Mineral phase reconstruction and separation behavior of zinc and iron from zinc-containing dust[J]. Materials, 2023, 16(9): 3481.
|
[30] |
QIU J Y, YU S, SHAO J G, et al. Mechanisms and kinetics of zinc and iron separation enhanced by calcified carbothermal reduction for electric arc furnace dust[J]. Korean Journal of Chemical Engineering, 2023, 40(4): 975-985.
|
[1] | ZHU Zhongnan, LYU Guozhi, LI Xiaofei, JIANG Zhigang, ZHANG Ting’an. Study on the behavior of sodium, aluminum and silicon in the melting reduction of high-iron red mud[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 773-780. DOI: 10.13264/j.cnki.ysjskx.2023.06.004 |
[2] | ZHOU Wenwang, JIANG Chenxi, ZENG Danliang, WU Yibo, QIU Tingsheng, YU Wen. Study on preparation of MoSx@ZVI composite by carbothermal reduction synthesis and its treatment of acid orange G wastewater[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 407-415. DOI: 10.13264/j.cnki.ysjskx.2023.03.014 |
[3] | LIU Zixiang, LIANG Jiayun, SUN Jingbo, GONG Ao, TIAN Lei. Preparation of metal arsenic from calcium arsenic slag by ferrothermal reduction[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 22-30. DOI: 10.13264/j.cnki.ysjskx.2022.02.004 |
[4] | XU Jiacong, YU Xiaoqiang, GONG Ao, WU Xuangao, CAO Caifang, LIU Mudan, CHEN Zhiqiang, TIAN Lei, XU Zhifeng, LIU Yong. Kinetic of carbothermal reduction of zinc, tin and lead from electroplating sludge[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 52-58. DOI: 10.13264/j.cnki.ysjskx.2020.05.008 |
[5] | TIAN Qinghua, LIU Zhiyong, GUO Xueyi, ZHANG Lei, QIN Hong. Recovery of gold from acidic thiourea solutions by reduction with iron powder under the influence of additives[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 1-5. DOI: 10.13264/j.cnki.ysjskx.2019.02.001 |
[6] | ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005 |
[7] | MIN Xiaobo, ZHANG Jianqiang, ZHANG Chun, WANG Mi, ZHOU Bosheng, SEHN SHEN Chen. Study on behavior of reductive leaching of zinc from neutral leaching residue in zinc smelting[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 1-6. DOI: 10.13264/j.cnki.ysjskx.2015.05.001 |
[8] | XIN Qin, WANG Xindong. Effect of temperature on the reduction of iron oxide by hydrogen and electrochemical performance of reduction product[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 41-47. DOI: 10.13264/j.cnki.ysjskx.2015.01.008 |
[9] | HOU Dong-ke, PENG Bing, CHAI Li-yuan, PENG Ning, YAN Huan, HU Ming. Zinc recovery from zinc calcine by selective reduction roasting and acid leaching[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 1-8. DOI: 10.13264/j.cnki.ysjskx.2014.01.001 |
[10] | ZHANG Xuan-xu, GUO Lian-ping, YU Dang-hua, HUANG Li. On Rare Earth Recovery Out of Waste Neodymium, Iron and Boron by Electro-reduction and P507 Extraction Separation Method[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 30-31. |
1. |
贺山明,潘界昌,徐国钻,李文君,梁勇. 粗钨酸钠溶液亚铁盐沉淀法除铬、钒的热力学分析及实验验证. 化工进展. 2023(04): 2171-2179 .
![]() | |
2. |
梁贺磊,王东兴,杨声海,刘志强,曹洪杨,饶帅,张魁芳. 废三元锂离子电池浸出液中磷酸盐沉淀法除铝热力学分析及应用. 有色金属(冶炼部分). 2020(12): 36-41+68 .
![]() | |
3. |
赵世强,郭丰. 三价铬电沉积过程强化规律研究. 有色金属科学与工程. 2019(04): 39-44 .
![]() | |
4. |
陈建龙,邓炳林,梁余威,刘伟仁,樊文星. 铁泥废酸浸出液中铬铁分离的研究. 广东化工. 2018(20): 193-195 .
![]() | |
5. |
刘牡丹,刘勇,陈志强,吕昊子,周吉奎,马致远. 添加剂对铜镍电镀污泥中重金属矿化的影响. 有色金属科学与工程. 2018(06): 60-64 .
![]() |